Abstract:Social media platforms, including X, Facebook, and Instagram, host millions of daily users, giving rise to bots-automated programs disseminating misinformation and ideologies with tangible real-world consequences. While bot detection in platform X has been the area of many deep learning models with adequate results, most approaches neglect the graph structure of social media relationships and often rely on hand-engineered architectures. Our work introduces the implementation of a Neural Architecture Search (NAS) technique, namely Deep and Flexible Graph Neural Architecture Search (DFG-NAS), tailored to Relational Graph Convolutional Neural Networks (RGCNs) in the task of bot detection in platform X. Our model constructs a graph that incorporates both the user relationships and their metadata. Then, DFG-NAS is adapted to automatically search for the optimal configuration of Propagation and Transformation functions in the RGCNs. Our experiments are conducted on the TwiBot-20 dataset, constructing a graph with 229,580 nodes and 227,979 edges. We study the five architectures with the highest performance during the search and achieve an accuracy of 85.7%, surpassing state-of-the-art models. Our approach not only addresses the bot detection challenge but also advocates for the broader implementation of NAS models in neural network design automation.
Abstract:Although not all bots are malicious, the vast majority of them are responsible for spreading misinformation and manipulating the public opinion about several issues, i.e., elections and many more. Therefore, the early detection of social spambots is crucial. Although there have been proposed methods for detecting bots in social media, there are still substantial limitations. For instance, existing research initiatives still extract a large number of features and train traditional machine learning algorithms or use GloVe embeddings and train LSTMs. However, feature extraction is a tedious procedure demanding domain expertise. Also, language models based on transformers have been proved to be better than LSTMs. Other approaches create large graphs and train graph neural networks requiring in this way many hours for training and access to computational resources. To tackle these limitations, this is the first study employing only the user description field and images of three channels denoting the type and content of tweets posted by the users. Firstly, we create digital DNA sequences, transform them to 3d images, and apply pretrained models of the vision domain, including EfficientNet, AlexNet, VGG16, etc. Next, we propose a multimodal approach, where we use TwHIN-BERT for getting the textual representation of the user description field and employ VGG16 for acquiring the visual representation for the image modality. We propose three different fusion methods, namely concatenation, gated multimodal unit, and crossmodal attention, for fusing the different modalities and compare their performances. Extensive experiments conducted on the Cresci '17 dataset demonstrate valuable advantages of our introduced approaches over state-of-the-art ones reaching Accuracy up to 99.98%.
Abstract:Stress and depression are prevalent nowadays across people of all ages due to the quick paces of life. People use social media to express their feelings. Thus, social media constitute a valuable form of information for the early detection of stress and depression. Although many research works have been introduced targeting the early recognition of stress and depression, there are still limitations. There have been proposed multi-task learning settings, which use depression and emotion (or figurative language) as the primary and auxiliary tasks respectively. However, although stress is inextricably linked with depression, researchers face these two tasks as two separate tasks. To address these limitations, we present the first study, which exploits two different datasets collected under different conditions, and introduce two multitask learning frameworks, which use depression and stress as the main and auxiliary tasks respectively. Specifically, we use a depression dataset and a stressful dataset including stressful posts from ten subreddits of five domains. In terms of the first approach, each post passes through a shared BERT layer, which is updated by both tasks. Next, two separate BERT encoder layers are exploited, which are updated by each task separately. Regarding the second approach, it consists of shared and task-specific layers weighted by attention fusion networks. We conduct a series of experiments and compare our approaches with existing research initiatives, single-task learning, and transfer learning. Experiments show multiple advantages of our approaches over state-of-the-art ones.
Abstract:In today's fast-paced world, the rates of stress and depression present a surge. Social media provide assistance for the early detection of mental health conditions. Existing methods mainly introduce feature extraction approaches and train shallow machine learning classifiers. Other researches use deep neural networks or transformers. Despite the fact that transformer-based models achieve noticeable improvements, they cannot often capture rich factual knowledge. Although there have been proposed a number of studies aiming to enhance the pretrained transformer-based models with extra information or additional modalities, no prior work has exploited these modifications for detecting stress and depression through social media. In addition, although the reliability of a machine learning model's confidence in its predictions is critical for high-risk applications, there is no prior work taken into consideration the model calibration. To resolve the above issues, we present the first study in the task of depression and stress detection in social media, which injects extra linguistic information in transformer-based models, namely BERT and MentalBERT. Specifically, the proposed approach employs a Multimodal Adaptation Gate for creating the combined embeddings, which are given as input to a BERT (or MentalBERT) model. For taking into account the model calibration, we apply label smoothing. We test our proposed approaches in three publicly available datasets and demonstrate that the integration of linguistic features into transformer-based models presents a surge in the performance. Also, the usage of label smoothing contributes to both the improvement of the model's performance and the calibration of the model. We finally perform a linguistic analysis of the posts and show differences in language between stressful and non-stressful texts, as well as depressive and non-depressive posts.
Abstract:Alzheimer's disease (AD) constitutes a complex neurocognitive disease and is the main cause of dementia. Although many studies have been proposed targeting at diagnosing dementia through spontaneous speech, there are still limitations. Existing state-of-the-art approaches, which propose multimodal methods, train separately language and acoustic models, employ majority-vote approaches, and concatenate the representations of the different modalities either at the input level, i.e., early fusion, or during training. Also, some of them employ self-attention layers, which calculate the dependencies between representations without considering the contextual information. In addition, no prior work has taken into consideration the model calibration. To address these limitations, we propose some new methods for detecting AD patients, which capture the intra- and cross-modal interactions. First, we convert the audio files into log-Mel spectrograms, their delta, and delta-delta and create in this way an image per audio file consisting of three channels. Next, we pass each transcript and image through BERT and DeiT models respectively. After that, context-based self-attention layers, self-attention layers with a gate model, and optimal transport domain adaptation methods are employed for capturing the intra- and inter-modal interactions. Finally, we exploit two methods for fusing the self and cross-attended features. For taking into account the model calibration, we apply label smoothing. We use both performance and calibration metrics. Experiments conducted on the ADReSS Challenge dataset indicate the efficacy of our introduced approaches over existing research initiatives with our best performing model reaching Accuracy and F1-score up to 91.25% and 91.06% respectively.
Abstract:Alzheimer's dementia (AD) affects memory, thinking, and language, deteriorating person's life. An early diagnosis is very important as it enables the person to receive medical help and ensure quality of life. Therefore, leveraging spontaneous speech in conjunction with machine learning methods for recognizing AD patients has emerged into a hot topic. Most of the previous works employ Convolutional Neural Networks (CNNs), to process the input signal. However, finding a CNN architecture is a time-consuming process and requires domain expertise. Moreover, the researchers introduce early and late fusion approaches for fusing different modalities or concatenate the representations of the different modalities during training, thus the inter-modal interactions are not captured. To tackle these limitations, first we exploit a Neural Architecture Search (NAS) method to automatically find a high performing CNN architecture. Next, we exploit several fusion methods, including Multimodal Factorized Bilinear Pooling and Tucker Decomposition, to combine both speech and text modalities. To the best of our knowledge, there is no prior work exploiting a NAS approach and these fusion methods in the task of dementia detection from spontaneous speech. We perform extensive experiments on the ADReSS Challenge dataset and show the effectiveness of our approach over state-of-the-art methods.
Abstract:Alzheimer's disease (AD) is a progressive neurological disorder, meaning that the symptoms develop gradually throughout the years. It is also the main cause of dementia, which affects memory, thinking skills, and mental abilities. Nowadays, researchers have moved their interest towards AD detection from spontaneous speech, since it constitutes a time-effective procedure. However, existing state-of-the-art works proposing multimodal approaches do not take into consideration the inter- and intra-modal interactions and propose early and late fusion approaches. To tackle these limitations, we propose deep neural networks, which can be trained in an end-to-end trainable way and capture the inter- and intra-modal interactions. Firstly, each audio file is converted to an image consisting of three channels, i.e., log-Mel spectrogram, delta, and delta-delta. Next, each transcript is passed through a BERT model followed by a gated self-attention layer. Similarly, each image is passed through a Swin Transformer followed by an independent gated self-attention layer. Acoustic features are extracted also from each audio file. Finally, the representation vectors from the different modalities are fed to a tensor fusion layer for capturing the inter-modal interactions. Extensive experiments conducted on the ADReSS Challenge dataset indicate that our introduced approaches obtain valuable advantages over existing research initiatives reaching Accuracy and F1-score up to 86.25% and 85.48% respectively.
Abstract:Cardiovascular disease (CVD) is a class of diseases that involve the heart or blood vessels and according to World Health Organization is the leading cause of death worldwide. EHR data regarding this case, as well as medical cases in general, contain missing values very frequently. The percentage of missingness may vary and is linked with instrument errors, manual data entry procedures, etc. Even though the missing rate is usually significant, in many cases the missing value imputation part is handled poorly either with case-deletion or with simple statistical approaches such as mode and median imputation. These methods are known to introduce significant bias, since they do not account for the relationships between the dataset's variables. Within the medical framework, many datasets consist of lab tests or patient medical tests, where these relationships are present and strong. To address these limitations, in this paper we test and modify state-of-the-art missing value imputation methods based on Generative Adversarial Networks (GANs) and Autoencoders. The evaluation is accomplished for both the tasks of data imputation and post-imputation prediction. Regarding the imputation task, we achieve improvements of 0.20, 7.00% in normalised Root Mean Squared Error (RMSE) and Area Under the Receiver Operating Characteristic Curve (AUROC) respectively. In terms of the post-imputation prediction task, our models outperform the standard approaches by 2.50% in F1-score.
Abstract:People are regularly confronted with potentially deceptive statements (e.g., fake news, misleading product reviews, or lies about activities). Only few works on automated text-based deception detection have exploited the potential of deep learning approaches. A critique of deep-learning methods is their lack of interpretability, preventing us from understanding the underlying (linguistic) mechanisms involved in deception. However, recent advancements have made it possible to explain some aspects of such models. This paper proposes and evaluates six deep-learning models, including combinations of BERT (and RoBERTa), MultiHead Attention, co-attentions, and transformers. To understand how the models reach their decisions, we then examine the model's predictions with LIME. We then zoom in on vocabulary uniqueness and the correlation of LIWC categories with the outcome class (truthful vs deceptive). The findings suggest that our transformer-based models can enhance automated deception detection performances (+2.11% in accuracy) and show significant differences pertinent to the usage of LIWC features in truthful and deceptive statements.
Abstract:Alzheimer's disease (AD) constitutes a neurodegenerative disease with serious consequences to peoples' everyday lives, if it is not diagnosed early since there is no available cure. Because of the cost of examinations for diagnosing dementia, i.e., Magnetic Resonance Imaging (MRI), electroencephalogram (EEG) signals etc., current work has been focused on diagnosing dementia from spontaneous speech. However, little work has been done regarding the conversion of speech data to Log-Mel spectrograms and Mel-frequency cepstral coefficients (MFCCs) and the usage of pretrained models. Concurrently, little work has been done in terms of both the usage of transformer networks and the way the two modalities, i.e., speech and transcripts, are combined in a single neural network. To address these limitations, first we employ several pretrained models, with Vision Transformer (ViT) achieving the highest evaluation results. Secondly, we propose multimodal models. More specifically, our introduced models include Gated Multimodal Unit in order to control the influence of each modality towards the final classification and crossmodal attention so as to capture in an effective way the relationships between the two modalities. Extensive experiments conducted on the ADReSS Challenge dataset demonstrate the effectiveness of the proposed models and their superiority over state-of-the-art approaches.