Abstract:Deep neural networks are powerful machines for visual pattern recognition, but reasoning tasks that are easy for humans may still be difficult for neural models. Humans possess the ability to extrapolate reasoning strategies learned on simple problems to solve harder examples, often by thinking for longer. For example, a person who has learned to solve small mazes can easily extend the very same search techniques to solve much larger mazes by spending more time. In computers, this behavior is often achieved through the use of algorithms, which scale to arbitrarily hard problem instances at the cost of more computation. In contrast, the sequential computing budget of feed-forward neural networks is limited by their depth, and networks trained on simple problems have no way of extending their reasoning to accommodate harder problems. In this work, we show that recurrent networks trained to solve simple problems with few recurrent steps can indeed solve much more complex problems simply by performing additional recurrences during inference. We demonstrate this algorithmic behavior of recurrent networks on prefix sum computation, mazes, and chess. In all three domains, networks trained on simple problem instances are able to extend their reasoning abilities at test time simply by "thinking for longer."
Abstract:Tabular data underpins numerous high-impact applications of machine learning from fraud detection to genomics and healthcare. Classical approaches to solving tabular problems, such as gradient boosting and random forests, are widely used by practitioners. However, recent deep learning methods have achieved a degree of performance competitive with popular techniques. We devise a hybrid deep learning approach to solving tabular data problems. Our method, SAINT, performs attention over both rows and columns, and it includes an enhanced embedding method. We also study a new contrastive self-supervised pre-training method for use when labels are scarce. SAINT consistently improves performance over previous deep learning methods, and it even outperforms gradient boosting methods, including XGBoost, CatBoost, and LightGBM, on average over a variety of benchmark tasks.
Abstract:It is widely believed that natural image data exhibits low-dimensional structure despite the high dimensionality of conventional pixel representations. This idea underlies a common intuition for the remarkable success of deep learning in computer vision. In this work, we apply dimension estimation tools to popular datasets and investigate the role of low-dimensional structure in deep learning. We find that common natural image datasets indeed have very low intrinsic dimension relative to the high number of pixels in the images. Additionally, we find that low dimensional datasets are easier for neural networks to learn, and models solving these tasks generalize better from training to test data. Along the way, we develop a technique for validating our dimension estimation tools on synthetic data generated by GANs allowing us to actively manipulate the intrinsic dimension by controlling the image generation process. Code for our experiments may be found here https://github.com/ppope/dimensions.
Abstract:Deep neural networks are powerful machines for visual pattern recognition, but reasoning tasks that are easy for humans may still be difficult for neural models. Humans can extrapolate simple reasoning strategies to solve difficult problems using long sequences of abstract manipulations, i.e., harder problems are solved by thinking for longer. In contrast, the sequential computing budget of feed-forward networks is limited by their depth, and networks trained on simple problems have no way of extending their reasoning capabilities without retraining. In this work, we observe that recurrent networks have the uncanny ability to closely emulate the behavior of non-recurrent deep models, often doing so with far fewer parameters, on both image classification and maze solving tasks. We also explore whether recurrent networks can make the generalization leap from simple problems to hard problems simply by increasing the number of recurrent iterations used at test time. To this end, we show that recurrent networks that are trained to solve simple mazes with few recurrent steps can indeed solve much more complex problems simply by performing additional recurrences during inference.
Abstract:Large organizations such as social media companies continually release data, for example user images. At the same time, these organizations leverage their massive corpora of released data to train proprietary models that give them an edge over their competitors. These two behaviors can be in conflict as an organization wants to prevent competitors from using their own data to replicate the performance of their proprietary models. We solve this problem by developing a data poisoning method by which publicly released data can be minimally modified to prevent others from train-ing models on it. Moreover, our method can be used in an online fashion so that companies can protect their data in real time as they release it.We demonstrate the success of our approach onImageNet classification and on facial recognition.
Abstract:Data poisoning and backdoor attacks manipulate training data to induce security breaches in a victim model. These attacks can be provably deflected using differentially private (DP) training methods, although this comes with a sharp decrease in model performance. The InstaHide method has recently been proposed as an alternative to DP training that leverages supposed privacy properties of the mixup augmentation, although without rigorous guarantees. In this work, we show that strong data augmentations, such as mixup and random additive noise, nullify poison attacks while enduring only a small accuracy trade-off. To explain these finding, we propose a training method, DP-InstaHide, which combines the mixup regularizer with additive noise. A rigorous analysis of DP-InstaHide shows that mixup does indeed have privacy advantages, and that training with k-way mixup provably yields at least k times stronger DP guarantees than a naive DP mechanism. Because mixup (as opposed to noise) is beneficial to model performance, DP-InstaHide provides a mechanism for achieving stronger empirical performance against poisoning attacks than other known DP methods.
Abstract:Data poisoning is a threat model in which a malicious actor tampers with training data to manipulate outcomes at inference time. A variety of defenses against this threat model have been proposed, but each suffers from at least one of the following flaws: they are easily overcome by adaptive attacks, they severely reduce testing performance, or they cannot generalize to diverse data poisoning threat models. Adversarial training, and its variants, is currently considered the only empirically strong defense against (inference-time) adversarial attacks. In this work, we extend the adversarial training framework to instead defend against (training-time) poisoning and backdoor attacks. Our method desensitizes networks to the effects of poisoning by creating poisons during training and injecting them into training batches. We show that this defense withstands adaptive attacks, generalizes to diverse threat models, and incurs a better performance trade-off than previous defenses.
Abstract:As machine learning algorithms have been widely deployed across applications, many concerns have been raised over the fairness of their predictions, especially in high stakes settings (such as facial recognition and medical imaging). To respond to these concerns, the community has proposed and formalized various notions of fairness as well as methods for rectifying unfair behavior. While fairness constraints have been studied extensively for classical models, the effectiveness of methods for imposing fairness on deep neural networks is unclear. In this paper, we observe that these large models overfit to fairness objectives, and produce a range of unintended and undesirable consequences. We conduct our experiments on both facial recognition and automated medical diagnosis datasets using state-of-the-art architectures.
Abstract:Facial recognition systems are increasingly deployed by private corporations, government agencies, and contractors for consumer services and mass surveillance programs alike. These systems are typically built by scraping social media profiles for user images. Adversarial perturbations have been proposed for bypassing facial recognition systems. However, existing methods fail on full-scale systems and commercial APIs. We develop our own adversarial filter that accounts for the entire image processing pipeline and is demonstrably effective against industrial-grade pipelines that include face detection and large scale databases. Additionally, we release an easy-to-use webtool that significantly degrades the accuracy of Amazon Rekognition and the Microsoft Azure Face Recognition API, reducing the accuracy of each to below 1%.
Abstract:As machine learning systems grow in scale, so do their training data requirements, forcing practitioners to automate and outsource the curation of training data in order to achieve state-of-the-art performance. The absence of trustworthy human supervision over the data collection process exposes organizations to security vulnerabilities; training data can be manipulated to control and degrade the downstream behaviors of learned models. The goal of this work is to systematically categorize and discuss a wide range of dataset vulnerabilities and exploits, approaches for defending against these threats, and an array of open problems in this space. In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.