Dalian University of Technology
Abstract:We propose VisFusion, a visibility-aware online 3D scene reconstruction approach from posed monocular videos. In particular, we aim to reconstruct the scene from volumetric features. Unlike previous reconstruction methods which aggregate features for each voxel from input views without considering its visibility, we aim to improve the feature fusion by explicitly inferring its visibility from a similarity matrix, computed from its projected features in each image pair. Following previous works, our model is a coarse-to-fine pipeline including a volume sparsification process. Different from their works which sparsify voxels globally with a fixed occupancy threshold, we perform the sparsification on a local feature volume along each visual ray to preserve at least one voxel per ray for more fine details. The sparse local volume is then fused with a global one for online reconstruction. We further propose to predict TSDF in a coarse-to-fine manner by learning its residuals across scales leading to better TSDF predictions. Experimental results on benchmarks show that our method can achieve superior performance with more scene details. Code is available at: https://github.com/huiyu-gao/VisFusion
Abstract:The sparse transformer can reduce the computational complexity of the self-attention layers to $O(n)$, whilst still being a universal approximator of continuous sequence-to-sequence functions. However, this permutation variant operation is not appropriate for direct application to sets. In this paper, we proposed an $O(n)$ complexity sampled transformer that can process point set elements directly without any additional inductive bias. Our sampled transformer introduces random element sampling, which randomly splits point sets into subsets, followed by applying a shared Hamiltonian self-attention mechanism to each subset. The overall attention mechanism can be viewed as a Hamiltonian cycle in the complete attention graph, and the permutation of point set elements is equivalent to randomly sampling Hamiltonian cycles. This mechanism implements a Monte Carlo simulation of the $O(n^2)$ dense attention connections. We show that it is a universal approximator for continuous set-to-set functions. Experimental results on point-clouds show comparable or better accuracy with significantly reduced computational complexity compared to the dense transformer or alternative sparse attention schemes.
Abstract:In this paper, we tackle the task of scene-aware 3D human motion forecasting, which consists of predicting future human poses given a 3D scene and a past human motion. A key challenge of this task is to ensure consistency between the human and the scene, accounting for human-scene interactions. Previous attempts to do so model such interactions only implicitly, and thus tend to produce artifacts such as "ghost motion" because of the lack of explicit constraints between the local poses and the global motion. Here, by contrast, we propose to explicitly model the human-scene contacts. To this end, we introduce distance-based contact maps that capture the contact relationships between every joint and every 3D scene point at each time instant. We then develop a two-stage pipeline that first predicts the future contact maps from the past ones and the scene point cloud, and then forecasts the future human poses by conditioning them on the predicted contact maps. During training, we explicitly encourage consistency between the global motion and the local poses via a prior defined using the contact maps and future poses. Our approach outperforms the state-of-the-art human motion forecasting and human synthesis methods on both synthetic and real datasets. Our code is available at https://github.com/wei-mao-2019/ContAwareMotionPred.
Abstract:In this paper, we present the details of Women in Computer Vision Workshop - WiCV 2022, organized alongside the hybrid CVPR 2022 in New Orleans, Louisiana. It provides a voice to a minority (female) group in the computer vision community and focuses on increasing the visibility of these researchers, both in academia and industry. WiCV believes that such an event can play an important role in lowering the gender imbalance in the field of computer vision. WiCV is organized each year where it provides a) opportunity for collaboration between researchers from minority groups, b) mentorship to female junior researchers, c) financial support to presenters to overcome monetary burden and d) large and diverse choice of role models, who can serve as examples to younger researchers at the beginning of their careers. In this paper, we present a report on the workshop program, trends over the past years, a summary of statistics regarding presenters, attendees, and sponsorship for the WiCV 2022 workshop.
Abstract:We introduce the task of action-driven stochastic human motion prediction, which aims to predict multiple plausible future motions given a sequence of action labels and a short motion history. This differs from existing works, which predict motions that either do not respect any specific action category, or follow a single action label. In particular, addressing this task requires tackling two challenges: The transitions between the different actions must be smooth; the length of the predicted motion depends on the action sequence and varies significantly across samples. As we cannot realistically expect training data to cover sufficiently diverse action transitions and motion lengths, we propose an effective training strategy consisting of combining multiple motions from different actions and introducing a weak form of supervision to encourage smooth transitions. We then design a VAE-based model conditioned on both the observed motion and the action label sequence, allowing us to generate multiple plausible future motions of varying length. We illustrate the generality of our approach by exploring its use with two different temporal encoding models, namely RNNs and Transformers. Our approach outperforms baseline models constructed by adapting state-of-the-art single action-conditioned motion generation methods and stochastic human motion prediction approaches to our new task of action-driven stochastic motion prediction. Our code is available at https://github.com/wei-mao-2019/WAT.
Abstract:Recent cost volume pyramid based deep neural networks have unlocked the potential of efficiently leveraging high-resolution images for depth inference from multi-view stereo. In general, those approaches assume that the depth of each pixel follows a unimodal distribution. Boundary pixels usually follow a multi-modal distribution as they represent different depths; Therefore, the assumption results in an erroneous depth prediction at the coarser level of the cost volume pyramid and can not be corrected in the refinement levels leading to wrong depth predictions. In contrast, we propose constructing the cost volume by non-parametric depth distribution modeling to handle pixels with unimodal and multi-modal distributions. Our approach outputs multiple depth hypotheses at the coarser level to avoid errors in the early stage. As we perform local search around these multiple hypotheses in subsequent levels, our approach does not maintain the rigid depth spatial ordering and, therefore, we introduce a sparse cost aggregation network to derive information within each volume. We evaluate our approach extensively on two benchmark datasets: DTU and Tanks & Temples. Our experimental results show that our model outperforms existing methods by a large margin and achieves superior performance on boundary regions. Code is available at https://github.com/NVlabs/NP-CVP-MVSNet
Abstract:This paper addresses the problem of unsupervised parts-aware point cloud generation with learned parts-based self-similarity. Our SPA-VAE infers a set of latent canonical candidate shapes for any given object, along with a set of rigid body transformations for each such candidate shape to one or more locations within the assembled object. In this way, noisy samples on the surface of, say, each leg of a table, are effectively combined to estimate a single leg prototype. When parts-based self-similarity exists in the raw data, sharing data among parts in this way confers numerous advantages: modeling accuracy, appropriately self-similar generative outputs, precise in-filling of occlusions, and model parsimony. SPA-VAE is trained end-to-end using a variational Bayesian approach which uses the Gumbel-softmax trick for the shared part assignments, along with various novel losses to provide appropriate inductive biases. Quantitative and qualitative analyses on ShapeNet demonstrate the advantage of SPA-VAE.
Abstract:University evaluation and ranking is an extremely complex activity. Major universities are struggling because of increasingly complex indicator systems of world university rankings. So can we find the meta-indicators of the index system by simplifying the complexity? This research discovered three meta-indicators based on interpretable machine learning. The first one is time, to be friends with time, and believe in the power of time, and accumulate historical deposits; the second one is space, to be friends with city, and grow together by co-develop; the third one is relationships, to be friends with alumni, and strive for more alumni donations without ceiling.
Abstract:This paper tackles the problem of parts-aware point cloud generation. Unlike existing works which require the point cloud to be segmented into parts a priori, our parts-aware editing and generation is performed in an unsupervised manner. We achieve this with a simple modification of the Variational Auto-Encoder which yields a joint model of the point cloud itself along with a schematic representation of it as a combination of shape primitives. In particular, we introduce a latent representation of the point cloud which can be decomposed into a disentangled representation for each part of the shape. These parts are in turn disentangled into both a shape primitive and a point cloud representation, along with a standardising transformation to a canonical coordinate system. The dependencies between our standardising transformations preserve the spatial dependencies between the parts in a manner which allows meaningful parts-aware point cloud generation and shape editing. In addition to the flexibility afforded by our disentangled representation, the inductive bias introduced by our joint modelling approach yields the state-of-the-art experimental results on the ShapeNet dataset.
Abstract:Recent progress in stochastic motion prediction, i.e., predicting multiple possible future human motions given a single past pose sequence, has led to producing truly diverse future motions and even providing control over the motion of some body parts. However, to achieve this, the state-of-the-art method requires learning several mappings for diversity and a dedicated model for controllable motion prediction. In this paper, we introduce a unified deep generative network for both diverse and controllable motion prediction. To this end, we leverage the intuition that realistic human motions consist of smooth sequences of valid poses, and that, given limited data, learning a pose prior is much more tractable than a motion one. We therefore design a generator that predicts the motion of different body parts sequentially, and introduce a normalizing flow based pose prior, together with a joint angle loss, to achieve motion realism.Our experiments on two standard benchmark datasets, Human3.6M and HumanEva-I, demonstrate that our approach outperforms the state-of-the-art baselines in terms of both sample diversity and accuracy. The code is available at https://github.com/wei-mao-2019/gsps