Abstract:This paper proposes a novel semi-self sensing hybrid reconfigurable intelligent surface (SS-HRIS) in terahertz (THz) bands, where the RIS is equipped with reflecting elements divided between passive and active elements in addition to sensing elements. SS-HRIS along with integrated sensing and communications (ISAC) can help to mitigate the multipath attenuation that is abundant in THz bands. In our proposed scheme, sensors are configured at the SS-HRIS to receive the radar echo signal from a target. A joint base station (BS) beamforming and HRIS precoding matrix optimization problem is proposed to maximize the sum rate of communication users while maintaining satisfactory sensing performance measured by the Cramer-Rao bound (CRB) for estimating the direction of angles of arrival (AoA) of the echo signal and thermal noise at the target. The CRB expression is first derived and the sum rate maximization problem is formulated subject to communication and sensing performance constraints. To solve the complex non-convex optimization problem, deep deterministic policy gradient (DDPG)-based deep reinforcement learning (DRL) algorithm is proposed, where the reward function, the action space and the state space are modeled. Simulation results show that the proposed DDPG-based DRL algorithm converges well and achieves better performance than several baselines, such as the soft actor-critic (SAC), proximal policy optimization (PPO), greedy algorithm and random BS beamforming and HRIS precoding matrix schemes. Moreover, it demonstrates that adopting HRIS significantly enhances the achievable sum rate compared to passive RIS and random BS beamforming and HRIS precoding matrix schemes.
Abstract:This paper presents a novel heuristic deep reinforcement learning (HDRL) framework designed to optimize reconfigurable intelligent surface (RIS) phase shifts in secure satellite communication systems utilizing rate splitting multiple access (RSMA). The proposed HDRL approach addresses the challenges of large action spaces inherent in deep reinforcement learning by integrating heuristic algorithms, thus improving exploration efficiency and leading to faster convergence toward optimal solutions. We validate the effectiveness of HDRL through comprehensive simulations, demonstrating its superiority over traditional algorithms, including random phase shift, greedy algorithm, exhaustive search, and Deep Q-Network (DQN), in terms of secure sum rate and computational efficiency. Additionally, we compare the performance of RSMA with non-orthogonal multiple access (NOMA), highlighting that RSMA, particularly when implemented with an increased number of RIS elements, significantly enhances secure communication performance. The results indicate that HDRL is a powerful tool for improving the security and reliability of RSMA satellite communication systems, offering a practical balance between performance and computational demands.
Abstract:In mmWave wireless networks, signal blockages present a significant challenge due to the susceptibility to environmental moving obstructions. Recently, the availability of visual data has been leveraged to enhance blockage prediction accuracy in mmWave networks. In this work, we propose a Vision Transformer (ViT)-based approach for visual-aided blockage prediction that intelligently switches between mmWave and Sub-6 GHz frequencies to maximize network throughput and maintain reliable connectivity. Given the computational demands of processing visual data, we implement our solution within a hierarchical fog-cloud computing architecture, where fog nodes collaborate with cloud servers to efficiently manage computational tasks. This structure incorporates a generative AI-based compression technique that significantly reduces the volume of visual data transmitted between fog nodes and cloud centers. Our proposed method is tested with the real-world DeepSense 6G dataset, and according to the simulation results, it achieves a blockage prediction accuracy of 92.78% while reducing bandwidth usage by 70.31%.
Abstract:Federated learning (FL) is an innovative distributed artificial intelligence (AI) technique. It has been used for interdisciplinary studies in different fields such as healthcare, marketing and finance. However the application of FL in wireless networks is still in its infancy. In this work, we first overview benefits and concerns when applying FL to wireless networks. Next, we provide a new perspective on existing personalized FL frameworks by analyzing the relationship between cooperation and personalization in these frameworks. Additionally, we discuss the possibility of tuning the cooperation level with a choice-based approach. Our choice-based FL approach is a flexible and safe FL framework that allows participants to lower the level of cooperation when they feel unsafe or unable to benefit from the cooperation. In this way, the choice-based FL framework aims to address the safety and fairness concerns in FL and protect participants from malicious attacks.
Abstract:Beam management is an important technique to improve signal strength and reduce interference in wireless communication systems. Recently, there has been increasing interest in using diverse sensing modalities for beam management. However, it remains a big challenge to process multi-modal data efficiently and extract useful information. On the other hand, the recently emerging multi-modal transformer (MMT) is a promising technique that can process multi-modal data by capturing long-range dependencies. While MMT is highly effective in handling multi-modal data and providing robust beam management, integrating reinforcement learning (RL) further enhances their adaptability in dynamic environments. In this work, we propose a two-step beam management method by combining MMT with RL for dynamic beam index prediction. In the first step, we divide available beam indices into several groups and leverage MMT to process diverse data modalities to predict the optimal beam group. In the second step, we employ RL for fast beam decision-making within each group, which in return maximizes throughput. Our proposed framework is tested on a 6G dataset. In this testing scenario, it achieves higher beam prediction accuracy and system throughput compared to both the MMT-only based method and the RL-only based method.
Abstract:Network slicing is a pivotal paradigm in wireless networks enabling customized services to users and applications. Yet, intelligent jamming attacks threaten the performance of network slicing. In this paper, we focus on the security aspect of network slicing over a deep transfer reinforcement learning (DTRL) enabled scenario. We first demonstrate how a deep reinforcement learning (DRL)-enabled jamming attack exposes potential risks. In particular, the attacker can intelligently jam resource blocks (RBs) reserved for slices by monitoring transmission signals and perturbing the assigned resources. Then, we propose a DRL-driven mitigation model to mitigate the intelligent attacker. Specifically, the defense mechanism generates interference on unallocated RBs where another antenna is used for transmitting powerful signals. This causes the jammer to consider these RBs as allocated RBs and generate interference for those instead of the allocated RBs. The analysis revealed that the intelligent DRL-enabled jamming attack caused a significant 50% degradation in network throughput and 60% increase in latency in comparison with the no-attack scenario. However, with the implemented mitigation measures, we observed 80% improvement in network throughput and 70% reduction in latency in comparison to the under-attack scenario.
Abstract:In 5G networks, network slicing has emerged as a pivotal paradigm to address diverse user demands and service requirements. To meet the requirements, reinforcement learning (RL) algorithms have been utilized widely, but this method has the problem of overestimation and exploration-exploitation trade-offs. To tackle these problems, this paper explores the application of self-play ensemble Q-learning, an extended version of the RL-based technique. Self-play ensemble Q-learning utilizes multiple Q-tables with various exploration-exploitation rates leading to different observations for choosing the most suitable action for each state. Moreover, through self-play, each model endeavors to enhance its performance compared to its previous iterations, boosting system efficiency, and decreasing the effect of overestimation. For performance evaluation, we consider three RL-based algorithms; self-play ensemble Q-learning, double Q-learning, and Q-learning, and compare their performance under different network traffic. Through simulations, we demonstrate the effectiveness of self-play ensemble Q-learning in meeting the diverse demands within 21.92% in latency, 24.22% in throughput, and 23.63\% in packet drop rate in comparison with the baseline methods. Furthermore, we evaluate the robustness of self-play ensemble Q-learning and double Q-learning in situations where one of the Q-tables is affected by a malicious user. Our results depicted that the self-play ensemble Q-learning method is more robust against adversarial users and prevents a noticeable drop in system performance, mitigating the impact of users manipulating policies.
Abstract:The integration of unmanned aerial vehicles (UAVs) with mobile edge computing (MEC) and Internet of Things (IoT) technology in smart farms is pivotal for efficient resource management and enhanced agricultural productivity sustainably. This paper addresses the critical need for optimizing task offloading in secure UAV-assisted smart farm networks, aiming to reduce total delay and energy consumption while maintaining robust security in data communications. We propose a multi-agent deep reinforcement learning (DRL)-based approach using a deep double Q-network (DDQN) with an action mask (AM), designed to manage task offloading dynamically and efficiently. The simulation results demonstrate the superior performance of our method in managing task offloading, highlighting significant improvements in operational efficiency by reducing delay and energy consumption. This aligns with the goal of developing sustainable and energy-efficient solutions for next-generation network infrastructures, making our approach an advanced solution for achieving both performance and sustainability in smart farming applications.
Abstract:In recent years, machine learning (ML) techniques have created numerous opportunities for intelligent mobile networks and have accelerated the automation of network operations. However, complex network tasks may involve variables and considerations even beyond the capacity of traditional ML algorithms. On the other hand, large language models (LLMs) have recently emerged, demonstrating near-human-level performance in cognitive tasks across various fields. However, they remain prone to hallucinations and often lack common sense in basic tasks. Therefore, they are regarded as assistive tools for humans. In this work, we propose the concept of "generative AI-in-the-loop" and utilize the semantic understanding, context awareness, and reasoning abilities of LLMs to assist humans in handling complex or unforeseen situations in mobile communication networks. We believe that combining LLMs and ML models allows both to leverage their respective capabilities and achieve better results than either model alone. To support this idea, we begin by analyzing the capabilities of LLMs and compare them with traditional ML algorithms. We then explore potential LLM-based applications in line with the requirements of next-generation networks. We further examine the integration of ML and LLMs, discussing how they can be used together in mobile networks. Unlike existing studies, our research emphasizes the fusion of LLMs with traditional ML-driven next-generation networks and serves as a comprehensive refinement of existing surveys. Finally, we provide a case study to enhance ML-based network intrusion detection with synthesized data generated by LLMs. Our case study further demonstrates the advantages of our proposed idea.
Abstract:Large language models (LLMs), especially generative pre-trained transformers (GPTs), have recently demonstrated outstanding ability in information comprehension and problem-solving. This has motivated many studies in applying LLMs to wireless communication networks. In this paper, we propose a pre-trained LLM-empowered framework to perform fully automatic network intrusion detection. Three in-context learning methods are designed and compared to enhance the performance of LLMs. With experiments on a real network intrusion detection dataset, in-context learning proves to be highly beneficial in improving the task processing performance in a way that no further training or fine-tuning of LLMs is required. We show that for GPT-4, testing accuracy and F1-Score can be improved by 90%. Moreover, pre-trained LLMs demonstrate big potential in performing wireless communication-related tasks. Specifically, the proposed framework can reach an accuracy and F1-Score of over 95% on different types of attacks with GPT-4 using only 10 in-context learning examples.