Abstract:Due to the rapid growth in the number of Internet of Things (IoT) networks, the cyber risk has increased exponentially, and therefore, we have to develop effective IDS that can work well with highly imbalanced datasets. A high rate of missed threats can be the result, as traditional machine learning models tend to struggle in identifying attacks when normal data volume is much higher than the volume of attacks. For example, the dataset used in this study reveals a strong class imbalance with 94,659 instances of the majority class and only 28 instances of the minority class, making it quite challenging to determine rare attacks accurately. The challenges presented in this research are addressed by hybrid sampling techniques designed to improve data imbalance detection accuracy in IoT domains. After applying these techniques, we evaluate the performance of several machine learning models such as Random Forest, Soft Voting, Support Vector Classifier (SVC), K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), and Logistic Regression with respect to the classification of cyber-attacks. The obtained results indicate that the Random Forest model achieved the best performance with a Kappa score of 0.9903, test accuracy of 0.9961, and AUC of 0.9994. Strong performance is also shown by the Soft Voting model, with an accuracy of 0.9952 and AUC of 0.9997, indicating the benefits of combining model predictions. Overall, this work demonstrates the value of hybrid sampling combined with robust model and feature selection for significantly improving IoT security against cyber-attacks, especially in highly imbalanced data environments.
Abstract:Chronic Kidney Disease (CKD) is a major global health issue which is affecting million people around the world and with increasing rate of mortality. Mitigation of progression of CKD and better patient outcomes requires early detection. Nevertheless, limitations lie in traditional diagnostic methods, especially in resource constrained settings. This study proposes an advanced machine learning approach to enhance CKD detection by evaluating four models: Random Forest (RF), Multi-Layer Perceptron (MLP), Logistic Regression (LR), and a fine-tuned CatBoost algorithm. Specifically, among these, the fine-tuned CatBoost model demonstrated the best overall performance having an accuracy of 98.75%, an AUC of 0.9993 and a Kappa score of 97.35% of the studies. The proposed CatBoost model has used a nature inspired algorithm such as Simulated Annealing to select the most important features, Cuckoo Search to adjust outliers and grid search to fine tune its settings in such a way to achieve improved prediction accuracy. Features significance is explained by SHAP-a well-known XAI technique-for gaining transparency in the decision-making process of proposed model and bring up trust in diagnostic systems. Using SHAP, the significant clinical features were identified as specific gravity, serum creatinine, albumin, hemoglobin, and diabetes mellitus. The potential of advanced machine learning techniques in CKD detection is shown in this research, particularly for low income and middle-income healthcare settings where prompt and correct diagnoses are vital. This study seeks to provide a highly accurate, interpretable, and efficient diagnostic tool to add to efforts for early intervention and improved healthcare outcomes for all CKD patients.