Abstract:Liver diseases are a serious health concern in the world, which requires precise and timely diagnosis to enhance the survival chances of patients. The current literature implemented numerous machine learning and deep learning models to classify liver diseases, but most of them had some issues like high misclassification error, poor interpretability, prohibitive computational expense, and lack of good preprocessing strategies. In order to address these drawbacks, we introduced StackLiverNet in this study; an interpretable stacked ensemble model tailored to the liver disease detection task. The framework uses advanced data preprocessing and feature selection technique to increase model robustness and predictive ability. Random undersampling is performed to deal with class imbalance and make the training balanced. StackLiverNet is an ensemble of several hyperparameter-optimized base classifiers, whose complementary advantages are used through a LightGBM meta-model. The provided model demonstrates excellent performance, with the testing accuracy of 99.89%, Cohen Kappa of 0.9974, and AUC of 0.9993, having only 5 misclassifications, and efficient training and inference speeds that are amenable to clinical practice (training time 4.2783 seconds, inference time 0.1106 seconds). Besides, Local Interpretable Model-Agnostic Explanations (LIME) are applied to generate transparent explanations of individual predictions, revealing high concentrations of Alkaline Phosphatase and moderate SGOT as important observations of liver disease. Also, SHAP was used to rank features by their global contribution to predictions, while the Morris method confirmed the most influential features through sensitivity analysis.
Abstract:Digital systems find it challenging to keep up with cybersecurity threats. The daily emergence of more than 560,000 new malware strains poses significant hazards to the digital ecosystem. The traditional malware detection methods fail to operate properly and yield high false positive rates with low accuracy of the protection system. This study explores the ways in which malware can be detected using these machine learning (ML) and deep learning (DL) approaches to address those shortcomings. This study also includes a systematic comparison of the performance of some of the widely used ML models, such as random forest, multi-layer perceptron (MLP), and deep neural network (DNN), for determining the effectiveness of the domain of modern malware threat systems. We use a considerable-sized database from Kaggle, which has undergone optimized feature selection and preprocessing to improve model performance. Our finding suggests that the DNN model outperformed the other traditional models with the highest training accuracy of 99.92% and an almost perfect AUC score. Furthermore, the feature selection and preprocessing can help improve the capabilities of detection. This research makes an important contribution by analyzing the performance of the model on the performance metrics and providing insight into the effectiveness of the advanced detection techniques to build more robust and more reliable cybersecurity solutions against the growing malware threats.