Abstract:Rapid and accessible cardiac biomarker testing is essential for the timely diagnosis and risk assessment of myocardial infarction (MI) and heart failure (HF), two interrelated conditions that frequently coexist and drive recurrent hospitalizations with high mortality. However, current laboratory and point-of-care testing systems are limited by long turnaround times, narrow dynamic ranges for the tested biomarkers, and single-analyte formats that fail to capture the complexity of cardiovascular disease. Here, we present a deep learning-enhanced dual-mode multiplexed vertical flow assay (xVFA) with a portable optical reader and a neural network-based quantification pipeline. This optical sensor integrates colorimetric and chemiluminescent detection within a single paper-based cartridge to complementarily cover a large dynamic range (spanning ~6 orders of magnitude) for both low- and high-abundance biomarkers, while maintaining quantitative accuracy. Using 50 uL of serum, the optical sensor simultaneously quantifies cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), and N-terminal pro-B-type natriuretic peptide (NT-proBNP) within 23 min. The xVFA achieves sub-pg/mL sensitivity for cTnI and sub-ng/mL sensitivity for CK-MB and NT-proBNP, spanning the clinically relevant ranges for these biomarkers. Neural network models trained and blindly tested on 92 patient serum samples yielded a robust quantification performance (Pearson's r > 0.96 vs. reference assays). By combining high sensitivity, multiplexing, and automation in a compact and cost-effective optical sensor format, the dual-mode xVFA enables rapid and quantitative cardiovascular diagnostics at the point of care.
Abstract:Digital agriculture technologies rely on sensors, drones, robots, and autonomous farm equipment to improve farm yields and incorporate sustainability practices. However, the adoption of such technologies is severely limited by the lack of broadband connectivity in rural areas. We argue that farming applications do not require permanent always-on connectivity. Instead, farming activity and digital agriculture applications follow seasonal rhythms of agriculture. Therefore, the need for connectivity is highly localized in time and space. We introduce BYON, a new connectivity model for high bandwidth agricultural applications that relies on emerging connectivity solutions like citizens broadband radio service (CBRS) and satellite networks. BYON creates an agile connectivity solution that can be moved along a farm to create spatio-temporal connectivity bubbles. BYON incorporates a new gateway design that reacts to the presence of crops and optimizes coverage in agricultural settings. We evaluate BYON in a production farm and demonstrate its benefits.