Abstract:Recent advances in semantic segmentation of multi-modal remote sensing images have significantly improved the accuracy of tree cover mapping, supporting applications in urban planning, forest monitoring, and ecological assessment. Integrating data from multiple modalities-such as optical imagery, light detection and ranging (LiDAR), and synthetic aperture radar (SAR)-has shown superior performance over single-modality methods. However, these data are often acquired days or even months apart, during which various changes may occur, such as vegetation disturbances (e.g., logging, and wildfires) and variations in imaging quality. Such temporal misalignments introduce cross-modal uncertainty, especially in high-resolution imagery, which can severely degrade segmentation accuracy. To address this challenge, we propose MURTreeFormer, a novel multi-modal segmentation framework that mitigates and leverages aleatoric uncertainty for robust tree cover mapping. MURTreeFormer treats one modality as primary and others as auxiliary, explicitly modeling patch-level uncertainty in the auxiliary modalities via a probabilistic latent representation. Uncertain patches are identified and reconstructed from the primary modality's distribution through a VAE-based resampling mechanism, producing enhanced auxiliary features for fusion. In the decoder, a gradient magnitude attention (GMA) module and a lightweight refinement head (RH) are further integrated to guide attention toward tree-like structures and to preserve fine-grained spatial details. Extensive experiments on multi-modal datasets from Shanghai and Zurich demonstrate that MURTreeFormer significantly improves segmentation performance and effectively reduces the impact of temporally induced aleatoric uncertainty.
Abstract:Monitoring and understanding forest dynamics is essential for environmental conservation and management. This is why the Swiss National Forest Inventory (NFI) provides countrywide vegetation height maps at a spatial resolution of 0.5 m. Its long update time of 6 years, however, limits the temporal analysis of forest dynamics. This can be improved by using spaceborne remote sensing and deep learning to generate large-scale vegetation height maps in a cost-effective way. In this paper, we present an in-depth analysis of these methods for operational application in Switzerland. We generate annual, countrywide vegetation height maps at a 10-meter ground sampling distance for the years 2017 to 2020 based on Sentinel-2 satellite imagery. In comparison to previous works, we conduct a large-scale and detailed stratified analysis against a precise Airborne Laser Scanning reference dataset. This stratified analysis reveals a close relationship between the model accuracy and the topology, especially slope and aspect. We assess the potential of deep learning-derived height maps for change detection and find that these maps can indicate changes as small as 250 $m^2$. Larger-scale changes caused by a winter storm are detected with an F1-score of 0.77. Our results demonstrate that vegetation height maps computed from satellite imagery with deep learning are a valuable, complementary, cost-effective source of evidence to increase the temporal resolution for national forest assessments.