Queen Mary University of London
Abstract:We describe a set of experiments for building a temporal mental health dynamics system. We utilise a pre-existing methodology for distant-supervision of mental health data mining from social media platforms and deploy the system during the global COVID-19 pandemic as a case study. Despite the challenging nature of the task, we produce encouraging results, both explicit to the global pandemic and implicit to a global phenomenon, Christmas Depression, supported by the literature. We propose a methodology for providing insight into temporal mental health dynamics to be utilised for strategic decision-making.
Abstract:We study the influence of context on sentence acceptability. First we compare the acceptability ratings of sentences judged in isolation, with a relevant context, and with an irrelevant context. Our results show that context induces a cognitive load for humans, which compresses the distribution of ratings. Moreover, in relevant contexts we observe a discourse coherence effect which uniformly raises acceptability. Next, we test unidirectional and bidirectional language models in their ability to predict acceptability ratings. The bidirectional models show very promising results, with the best model achieving a new state-of-the-art for unsupervised acceptability prediction. The two sets of experiments provide insights into the cognitive aspects of sentence processing and central issues in the computational modelling of text and discourse.
Abstract:State of the art natural language processing tools are built on context-dependent word embeddings, but no direct method for evaluating these representations currently exists. Standard tasks and datasets for intrinsic evaluation of embeddings are based on judgements of similarity, but ignore context; standard tasks for word sense disambiguation take account of context but do not provide continuous measures of meaning similarity. This paper describes an effort to build a new dataset, CoSimLex, intended to fill this gap. Building on the standard pairwise similarity task of SimLex-999, it provides context-dependent similarity measures; covers not only discrete differences in word sense but more subtle, graded changes in meaning; and covers not only a well-resourced language (English) but a number of less-resourced languages. We define the task and evaluation metrics, outline the dataset collection methodology, and describe the status of the dataset so far.
Abstract:One of the fundamental requirements for models of semantic processing in dialogue is incrementality: a model must reflect how people interpret and generate language at least on a word-by-word basis, and handle phenomena such as fragments, incomplete and jointly-produced utterances. We show that the incremental word-by-word parsing process of Dynamic Syntax (DS) can be assigned a compositional distributional semantics, with the composition operator of DS corresponding to the general operation of tensor contraction from multilinear algebra. We provide abstract semantic decorations for the nodes of DS trees, in terms of vectors, tensors, and sums thereof; using the latter to model the underspecified elements crucial to assigning partial representations during incremental processing. As a working example, we give an instantiation of this theory using plausibility tensors of compositional distributional semantics, and show how our framework can incrementally assign a semantic plausibility measure as it parses phrases and sentences.
Abstract:This paper presents a geometric approach to the problem of modelling the relationship between words and concepts, focusing in particular on analogical phenomena in language and cognition. Grounded in recent theories regarding geometric conceptual spaces, we begin with an analysis of existing static distributional semantic models and move on to an exploration of a dynamic approach to using high dimensional spaces of word meaning to project subspaces where analogies can potentially be solved in an online, contextualised way. The crucial element of this analysis is the positioning of statistics in a geometric environment replete with opportunities for interpretation.
Abstract:We present STIR (STrongly Incremental Repair detection), a system that detects speech repairs and edit terms on transcripts incrementally with minimal latency. STIR uses information-theoretic measures from n-gram models as its principal decision features in a pipeline of classifiers detecting the different stages of repairs. Results on the Switchboard disfluency tagged corpus show utterance-final accuracy on a par with state-of-the-art incremental repair detection methods, but with better incremental accuracy, faster time-to-detection and less computational overhead. We evaluate its performance using incremental metrics and propose new repair processing evaluation standards.
Abstract:We provide a comparative study between neural word representations and traditional vector spaces based on co-occurrence counts, in a number of compositional tasks. We use three different semantic spaces and implement seven tensor-based compositional models, which we then test (together with simpler additive and multiplicative approaches) in tasks involving verb disambiguation and sentence similarity. To check their scalability, we additionally evaluate the spaces using simple compositional methods on larger-scale tasks with less constrained language: paraphrase detection and dialogue act tagging. In the more constrained tasks, co-occurrence vectors are competitive, although choice of compositional method is important; on the larger-scale tasks, they are outperformed by neural word embeddings, which show robust, stable performance across the tasks.