Abstract:The growing demand for mobile data services in dense urban areas has intensified the need for energy-efficient radio access networks (RANs) in future 6G systems. In this context, one promising strategy is cell switching (CS), which dynamically deactivates underutilized small base stations (SBSs) to reduce power consumption. However, while previous research explored CS primarily based on traffic load, ensuring user quality of service (QoS) under realistic channel conditions remains a challenge. In this paper, we propose a novel optimization-driven CS framework that jointly minimizes network power consumption and guarantees user QoS by enforcing a minimum received power threshold as part of offloading decisions. In contrast to prior load-based or learning-based approaches, our method explicitly integrates channel-aware information into the CS process, thus ensuring reliable service quality for offloaded users. Furthermore, flexibility of the proposed framework enables operators to adapt system behavior between energy-saving and QoS-preserving modes by tuning a single design parameter. Simulation results demonstrate that the proposed approach achieves up to 30% power savings as compared to baseline methods while fully maintaining QoS under diverse network conditions. Scalability and robustness of the proposed method in realistic heterogeneous networks (HetNets) further highlight its potential as a practical solution for sustainable 6G deployments.