Abstract:Cross-lingual transfer in natural language processing (NLP) models enhances multilingual performance by leveraging shared linguistic knowledge. However, traditional methods that process all data simultaneously often fail to mimic real-world scenarios, leading to challenges like catastrophic forgetting, where fine-tuning on new tasks degrades performance on previously learned ones. Our study explores this issue in multilingual contexts, focusing on linguistic differences affecting representational learning rather than just model parameters. We experiment with 52 languages using LoRA adapters of varying ranks to evaluate non-shared, partially shared, and fully shared parameters. Our aim is to see if parameter sharing through adapters can mitigate forgetting while preserving prior knowledge. We find that languages using non-Latin scripts are more susceptible to catastrophic forgetting, whereas those written in Latin script facilitate more effective cross-lingual transfer.
Abstract:Southeast Asia (SEA) is a region rich in linguistic diversity and cultural variety, with over 1,300 indigenous languages and a population of 671 million people. However, prevailing AI models suffer from a significant lack of representation of texts, images, and audio datasets from SEA, compromising the quality of AI models for SEA languages. Evaluating models for SEA languages is challenging due to the scarcity of high-quality datasets, compounded by the dominance of English training data, raising concerns about potential cultural misrepresentation. To address these challenges, we introduce SEACrowd, a collaborative initiative that consolidates a comprehensive resource hub that fills the resource gap by providing standardized corpora in nearly 1,000 SEA languages across three modalities. Through our SEACrowd benchmarks, we assess the quality of AI models on 36 indigenous languages across 13 tasks, offering valuable insights into the current AI landscape in SEA. Furthermore, we propose strategies to facilitate greater AI advancements, maximizing potential utility and resource equity for the future of AI in SEA.