Abstract:The goal of this paper is twofold. First, it explores hybrid evolutionary-swarm metaheuristics that combine the features of PSO and GA in a sequential, parallel and consecutive manner in comparison with their standard basic form: Genetic Algorithm and Particle Swarm Optimization. The algorithms were tested on a set of benchmark functions, including Ackley, Griewank, Levy, Michalewicz, Rastrigin, Schwefel, and Shifted Rotated Weierstrass, across multiple dimensions. The experimental results demonstrate that the hybrid approaches achieve superior convergence and consistency, especially in higher-dimensional search spaces. The second goal of this paper is to introduce a novel consecutive hybrid PSO-GA evolutionary algorithm that ensures continuity between PSO and GA steps through explicit information transfer mechanisms, specifically by modifying GA's variation operators to inherit velocity and personal best information.
Abstract:Evolutionary multi-agent systems (EMASs) are very good at dealing with difficult, multi-dimensional problems, their efficacy was proven theoretically based on analysis of the relevant Markov-Chain based model. Now the research continues on introducing autonomous hybridization into EMAS. This paper focuses on a proposed hybrid version of the EMAS, and covers selection and introduction of a number of hybrid operators and defining rules for starting the hybrid steps of the main algorithm. Those hybrid steps leverage existing, well-known and proven to be efficient metaheuristics, and integrate their results into the main algorithm. The discussed modifications are evaluated based on a number of difficult continuous-optimization benchmarks.
Abstract:Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches. In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model. Besides giving the background and the details of the proposed algorithms we apply them to optimization of selected variants of the problem and discuss the results.