Abstract:This paper presents the application of socio-cognitive mutation operators inspired by the TOPSIS method to the Low Autocorrelation Binary Sequence (LABS) problem. Traditional evolutionary algorithms, while effective, often suffer from premature convergence and poor exploration-exploitation balance. To address these challenges, we introduce socio-cognitive mutation mechanisms that integrate strategies of following the best solutions and avoiding the worst. By guiding search agents to imitate high-performing solutions and avoid poor ones, these operators enhance both solution diversity and convergence efficiency. Experimental results demonstrate that TOPSIS-inspired mutation outperforms the base algorithm in optimizing LABS sequences. The study highlights the potential of socio-cognitive learning principles in evolutionary computation and suggests directions for further refinement.
Abstract:The goal of this paper is twofold. First, it explores hybrid evolutionary-swarm metaheuristics that combine the features of PSO and GA in a sequential, parallel and consecutive manner in comparison with their standard basic form: Genetic Algorithm and Particle Swarm Optimization. The algorithms were tested on a set of benchmark functions, including Ackley, Griewank, Levy, Michalewicz, Rastrigin, Schwefel, and Shifted Rotated Weierstrass, across multiple dimensions. The experimental results demonstrate that the hybrid approaches achieve superior convergence and consistency, especially in higher-dimensional search spaces. The second goal of this paper is to introduce a novel consecutive hybrid PSO-GA evolutionary algorithm that ensures continuity between PSO and GA steps through explicit information transfer mechanisms, specifically by modifying GA's variation operators to inherit velocity and personal best information.