Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

BIVA: A Very Deep Hierarchy of Latent Variables for Generative Modeling



Lars Maaløe , Marco Fraccaro , Valentin Liévin , Ole Winther


   Access Paper or Ask Questions

An Efficient Implementation of Riemannian Manifold Hamiltonian Monte Carlo for Gaussian Process Models



Ulrich Paquet , Marco Fraccaro

* Technical report accompanying arXiv:1604.01972, "An Adaptive Resample-Move Algorithm for Estimating Normalizing Constants" (2016) 

   Access Paper or Ask Questions

Generative Temporal Models with Spatial Memory for Partially Observed Environments



Marco Fraccaro , Danilo Jimenez Rezende , Yori Zwols , Alexander Pritzel , S. M. Ali Eslami , Fabio Viola

* ICML 2018 

   Access Paper or Ask Questions

A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning



Marco Fraccaro , Simon Kamronn , Ulrich Paquet , Ole Winther

* NIPS 2017 

   Access Paper or Ask Questions

Semi-Supervised Generation with Cluster-aware Generative Models



Lars Maaløe , Marco Fraccaro , Ole Winther


   Access Paper or Ask Questions

Sequential Neural Models with Stochastic Layers



Marco Fraccaro , Søren Kaae Sønderby , Ulrich Paquet , Ole Winther

* NIPS 2016 

   Access Paper or Ask Questions

An Adaptive Resample-Move Algorithm for Estimating Normalizing Constants



Marco Fraccaro , Ulrich Paquet , Ole Winther

* 11 pages, 5 figures 

   Access Paper or Ask Questions