Abstract:Generative AI (GenAI) is rapidly transforming software engineering (SE) practices, influencing how SE processes are executed, as well as how software systems are developed, operated, and evolved. This paper applies design science research to build a roadmap for GenAI-augmented SE. The process consists of three cycles that incrementally integrate multiple sources of evidence, including collaborative discussions from the FSE 2025 "Software Engineering 2030" workshop, rapid literature reviews, and external feedback sessions involving peers. McLuhan's tetrads were used as a conceptual instrument to systematically capture the transforming effects of GenAI on SE processes and software products.The resulting roadmap identifies four fundamental forms of GenAI augmentation in SE and systematically characterizes their related research challenges and opportunities. These insights are then consolidated into a set of future research directions. By grounding the roadmap in a rigorous multi-cycle process and cross-validating it among independent author teams and peers, the study provides a transparent and reproducible foundation for analyzing how GenAI affects SE processes, methods and tools, and for framing future research within this rapidly evolving area. Based on these findings, the article finally makes ten predictions for SE in the year 2030.
Abstract:The presence of autonomous systems is growing at a fast pace and it is impacting many aspects of our lives. Designed to learn and act independently, these systems operate and perform decision-making without human intervention. However, they lack the ability to incorporate users' ethical preferences, which are unique for each individual in society and are required to personalize the decision-making processes. This reduces user trust and prevents autonomous systems from behaving according to the moral beliefs of their end-users. When multiple systems interact with differing ethical preferences, they must negotiate to reach an agreement that satisfies the ethical beliefs of all the parties involved and adjust their behavior consequently. To address this challenge, this paper proposes RobEthiChor, an approach that enables autonomous systems to incorporate user ethical preferences and contextual factors into their decision-making through ethics-based negotiation. RobEthiChor features a domain-agnostic reference architecture for designing autonomous systems capable of ethic-based negotiating. The paper also presents RobEthiChor-Ros, an implementation of RobEthiChor within the Robot Operating System (ROS), which can be deployed on robots to provide them with ethics-based negotiation capabilities. To evaluate our approach, we deployed RobEthiChor-Ros on real robots and ran scenarios where a pair of robots negotiate upon resource contention. Experimental results demonstrate the feasibility and effectiveness of the system in realizing ethics-based negotiation. RobEthiChor allowed robots to reach an agreement in more than 73\% of the scenarios with an acceptable negotiation time (0.67s on average). Experiments also demonstrate that the negotiation approach implemented in RobEthiChor is scalable.