Abstract:While large-scale text-to-image diffusion models continue to improve in visual quality, their increasing scale has widened the gap between state-of-the-art models and on-device solutions. To address this gap, we introduce NanoFLUX, a 2.4B text-to-image flow-matching model distilled from 17B FLUX.1-Schnell using a progressive compression pipeline designed to preserve generation quality. Our contributions include: (1) A model compression strategy driven by pruning redundant components in the diffusion transformer, reducing its size from 12B to 2B; (2) A ResNet-based token downsampling mechanism that reduces latency by allowing intermediate blocks to operate on lower-resolution tokens while preserving high-resolution processing elsewhere; (3) A novel text encoder distillation approach that leverages visual signals from early layers of the denoiser during sampling. Empirically, NanoFLUX generates 512 x 512 images in approximately 2.5 seconds on mobile devices, demonstrating the feasibility of high-quality on-device text-to-image generation.
Abstract:Instructional video editing applies edits to an input video using only text prompts, enabling intuitive natural-language control. Despite rapid progress, most methods still require fixed-length inputs and substantial compute. Meanwhile, autoregressive video generation enables efficient variable-length synthesis, yet remains under-explored for video editing. We introduce a causal, efficient video editing model that edits variable-length videos frame by frame. For efficiency, we start from a 2D image-to-image (I2I) diffusion model and adapt it to video-to-video (V2V) editing by conditioning the edit at time step t on the model's prediction at t-1. To leverage videos' temporal redundancy, we propose a new I2I diffusion forward process formulation that encourages the model to predict the residual between the target output and the previous prediction. We call this Residual Flow Diffusion Model (RFDM), which focuses the denoising process on changes between consecutive frames. Moreover, we propose a new benchmark that better ranks state-of-the-art methods for editing tasks. Trained on paired video data for global/local style transfer and object removal, RFDM surpasses I2I-based methods and competes with fully spatiotemporal (3D) V2V models, while matching the compute of image models and scaling independently of input video length. More content can be found in: https://smsd75.github.io/RFDM_page/




Abstract:Diffusion Transformers (DiTs) have emerged as a leading architecture for text-to-image synthesis, producing high-quality and photorealistic images. However, the quadratic scaling properties of the attention in DiTs hinder image generation with higher resolution or on devices with limited resources. This work introduces an efficient diffusion transformer (EDiT) to alleviate these efficiency bottlenecks in conventional DiTs and Multimodal DiTs (MM-DiTs). First, we present a novel linear compressed attention method that uses a multi-layer convolutional network to modulate queries with local information while keys and values are spatially aggregated. Second, we formulate a hybrid attention scheme for multi-modal inputs that combines linear attention for image-to-image interactions and standard scaled dot-product attention for interactions involving prompts. Merging these two approaches leads to an expressive, linear-time Multimodal Efficient Diffusion Transformer (MM-EDiT). We demonstrate the effectiveness of the EDiT and MM-EDiT architectures by integrating them into PixArt-Sigma(conventional DiT) and Stable Diffusion 3.5-Medium (MM-DiT), achieving up to 2.2x speedup with comparable image quality after distillation.




Abstract:Text-to-image synthesis has witnessed remarkable advancements in recent years. Many attempts have been made to adopt text-to-image models to support multiple tasks. However, existing approaches typically require resource-intensive re-training or additional parameters to accommodate for the new tasks, which makes the model inefficient for on-device deployment. We propose Multi-Task Upcycling (MTU), a simple yet effective recipe that extends the capabilities of a pre-trained text-to-image diffusion model to support a variety of image-to-image generation tasks. MTU replaces Feed-Forward Network (FFN) layers in the diffusion model with smaller FFNs, referred to as experts, and combines them with a dynamic routing mechanism. To the best of our knowledge, MTU is the first multi-task diffusion modeling approach that seamlessly blends multi-tasking with on-device compatibility, by mitigating the issue of parameter inflation. We show that the performance of MTU is on par with the single-task fine-tuned diffusion models across several tasks including image editing, super-resolution, and inpainting, while maintaining similar latency and computational load (GFLOPs) as the single-task fine-tuned models.


Abstract:Personalised speech enhancement (PSE), which extracts only the speech of a target user and removes everything else from a recorded audio clip, can potentially improve users' experiences of audio AI modules deployed in the wild. To support a large variety of downstream audio tasks, such as real-time ASR and audio-call enhancement, a PSE solution should operate in a streaming mode, i.e., input audio cleaning should happen in real-time with a small latency and real-time factor. Personalisation is typically achieved by extracting a target speaker's voice profile from an enrolment audio, in the form of a static embedding vector, and then using it to condition the output of a PSE model. However, a fixed target speaker embedding may not be optimal under all conditions. In this work, we present a streaming Transformer-based PSE model and propose a novel cross-attention approach that gives adaptive target speaker representations. We present extensive experiments and show that our proposed cross-attention approach outperforms competitive baselines consistently, even when our model is only approximately half the size.