Abstract:Business Process Simulation (BPS) is a critical tool for analyzing and improving organizational processes by estimating the impact of process changes. A key component of BPS is the case-arrival model, which determines the pattern of new case entries into a process. Although accurate case-arrival modeling is essential for reliable simulations, as it influences waiting and overall cycle times, existing approaches often rely on oversimplified static distributions of inter-arrival times. These approaches fail to capture the dynamic and temporal complexities inherent in organizational environments, leading to less accurate and reliable outcomes. To address this limitation, we propose Auto Time Kernel Density Estimation (AT-KDE), a divide-and-conquer approach that models arrival times of processes by incorporating global dynamics, day-of-week variations, and intraday distributional changes, ensuring both precision and scalability. Experiments conducted across 20 diverse processes demonstrate that AT-KDE is far more accurate and robust than existing approaches while maintaining sensible execution time efficiency.
Abstract:Business process simulation (BPS) is a key tool for analyzing and optimizing organizational workflows, supporting decision-making by estimating the impact of process changes. The reliability of such estimates depends on the ability of a BPS model to accurately mimic the process under analysis, making rigorous accuracy evaluation essential. However, the state-of-the-art approach to evaluating BPS models has two key limitations. First, it treats simulation as a forecasting problem, testing whether models can predict unseen future events. This fails to assess how well a model captures the as-is process, particularly when process behavior changes from train to test period. Thus, it becomes difficult to determine whether poor results stem from an inaccurate model or the inherent complexity of the data, such as unpredictable drift. Second, the evaluation approach strongly relies on Earth Mover's Distance-based metrics, which can obscure temporal patterns and thus yield misleading conclusions about simulation quality. To address these issues, we propose a novel framework that evaluates simulation quality based on its ability to generate representative process behavior. Instead of comparing simulated logs to future real-world executions, we evaluate whether predictive process monitoring models trained on simulated data perform comparably to those trained on real data for downstream analysis tasks. Empirical results show that our framework not only helps identify sources of discrepancies but also distinguishes between model accuracy and data complexity, offering a more meaningful way to assess BPS quality.
Abstract:Business process simulation (BPS) is a versatile technique for estimating process performance across various scenarios. Traditionally, BPS approaches employ a control-flow-first perspective by enriching a process model with simulation parameters. Although such approaches can mimic the behavior of centrally orchestrated processes, such as those supported by workflow systems, current control-flow-first approaches cannot faithfully capture the dynamics of real-world processes that involve distinct resource behavior and decentralized decision-making. Recognizing this issue, this paper introduces AgentSimulator, a resource-first BPS approach that discovers a multi-agent system from an event log, modeling distinct resource behaviors and interaction patterns to simulate the underlying process. Our experiments show that AgentSimulator achieves state-of-the-art simulation accuracy with significantly lower computation times than existing approaches while providing high interpretability and adaptability to different types of process-execution scenarios.
Abstract:With the rise of neural networks in various domains, multi-task learning (MTL) gained significant relevance. A key challenge in MTL is balancing individual task losses during neural network training to improve performance and efficiency through knowledge sharing across tasks. To address these challenges, we propose a novel task-weighting method by building on the most prevalent approach of Uncertainty Weighting and computing analytically optimal uncertainty-based weights, normalized by a softmax function with tunable temperature. Our approach yields comparable results to the combinatorially prohibitive, brute-force approach of Scalarization while offering a more cost-effective yet high-performing alternative. We conduct an extensive benchmark on various datasets and architectures. Our method consistently outperforms six other common weighting methods. Furthermore, we report noteworthy experimental findings for the practical application of MTL. For example, larger networks diminish the influence of weighting methods, and tuning the weight decay has a low impact compared to the learning rate.
Abstract:Neural networks often assume independence among input data samples, disregarding correlations arising from inherent clustering patterns in real-world datasets (e.g., due to different sites or repeated measurements). Recently, mixed effects neural networks (MENNs) which separate cluster-specific 'random effects' from cluster-invariant 'fixed effects' have been proposed to improve generalization and interpretability for clustered data. However, existing methods only allow for approximate quantification of cluster effects and are limited to regression and binary targets with only one clustering feature. We present MC-GMENN, a novel approach employing Monte Carlo methods to train Generalized Mixed Effects Neural Networks. We empirically demonstrate that MC-GMENN outperforms existing mixed effects deep learning models in terms of generalization performance, time complexity, and quantification of inter-cluster variance. Additionally, MC-GMENN is applicable to a wide range of datasets, including multi-class classification tasks with multiple high-cardinality categorical features. For these datasets, we show that MC-GMENN outperforms conventional encoding and embedding methods, simultaneously offering a principled methodology for interpreting the effects of clustering patterns.
Abstract:While multi-task learning (MTL) has gained significant attention in recent years, its underlying mechanisms remain poorly understood. Recent methods did not yield consistent performance improvements over single task learning (STL) baselines, underscoring the importance of gaining more profound insights about challenges specific to MTL. In our study, we challenge common assumptions in MTL in the context of STL: First, the choice of optimizer has only been mildly investigated in MTL. We show the pivotal role of common STL tools such as the Adam optimizer in MTL. We deduce the effectiveness of Adam to its partial loss-scale invariance. Second, the notion of gradient conflicts has often been phrased as a specific problem in MTL. We delve into the role of gradient conflicts in MTL and compare it to STL. For angular gradient alignment we find no evidence that this is a unique problem in MTL. We emphasize differences in gradient magnitude as the main distinguishing factor. Lastly, we compare the transferability of features learned through MTL and STL on common image corruptions, and find no conclusive evidence that MTL leads to superior transferability. Overall, we find surprising similarities between STL and MTL suggesting to consider methods from both fields in a broader context.