Abstract:Hardware security verification is a challenging and time-consuming task. For this purpose, design engineers may utilize tools such as formal verification, linters, and functional simulation tests, coupled with analysis and a deep understanding of the hardware design being inspected. Large Language Models (LLMs) have been used to assist during this task, either directly or in conjunction with existing tools. We improve the state of the art by proposing MARVEL, a multi-agent LLM framework for a unified approach to decision-making, tool use, and reasoning. MARVEL mimics the cognitive process of a designer looking for security vulnerabilities in RTL code. It consists of a supervisor agent that devises the security policy of the system-on-chips (SoCs) using its security documentation. It delegates tasks to validate the security policy to individual executor agents. Each executor agent carries out its assigned task using a particular strategy. Each executor agent may use one or more tools to identify potential security bugs in the design and send the results back to the supervisor agent for further analysis and confirmation. MARVEL includes executor agents that leverage formal tools, linters, simulation tests, LLM-based detection schemes, and static analysis-based checks. We test our approach on a known buggy SoC based on OpenTitan from the Hack@DATE competition. We find that 20 of the 48 issues reported by MARVEL pose security vulnerabilities.
Abstract:Recent Large Language Models (LLMs) such as OpenAI o3-mini and DeepSeek-R1 use enhanced reasoning through Chain-of-Thought (CoT). Their potential in hardware design, which relies on expert-driven iterative optimization, remains unexplored. This paper investigates whether reasoning LLMs can address challenges in High-Level Synthesis (HLS) design space exploration and optimization. During HLS, engineers manually define pragmas/directives to balance performance and resource constraints. We propose an LLM-based optimization agentic framework that automatically restructures code, inserts pragmas, and identifies optimal design points via feedback from HLs tools and access to integer-linear programming (ILP) solvers. Experiments compare reasoning models against conventional LLMs on benchmarks using success rate, efficiency, and design quality (area/latency) metrics, and provide the first-ever glimpse into the CoTs produced by a powerful open-source reasoning model like DeepSeek-R1.
Abstract:Oracle-less machine learning (ML) attacks have broken various logic locking schemes. Regular synthesis, which is tailored for area-power-delay optimization, yields netlists where key-gate localities are vulnerable to learning. Thus, we call for security-aware logic synthesis. We propose ALMOST, a framework for adversarial learning to mitigate oracle-less ML attacks via synthesis tuning. ALMOST uses a simulated-annealing-based synthesis recipe generator, employing adversarially trained models that can predict state-of-the-art attacks' accuracies over wide ranges of recipes and key-gate localities. Experiments on ISCAS benchmarks confirm the attacks' accuracies drops to around 50\% for ALMOST-synthesized circuits, all while not undermining design optimization.