Abstract:This paper presents the NTIRE 2025 image super-resolution ($\times$4) challenge, one of the associated competitions of the 10th NTIRE Workshop at CVPR 2025. The challenge aims to recover high-resolution (HR) images from low-resolution (LR) counterparts generated through bicubic downsampling with a $\times$4 scaling factor. The objective is to develop effective network designs or solutions that achieve state-of-the-art SR performance. To reflect the dual objectives of image SR research, the challenge includes two sub-tracks: (1) a restoration track, emphasizes pixel-wise accuracy and ranks submissions based on PSNR; (2) a perceptual track, focuses on visual realism and ranks results by a perceptual score. A total of 286 participants registered for the competition, with 25 teams submitting valid entries. This report summarizes the challenge design, datasets, evaluation protocol, the main results, and methods of each team. The challenge serves as a benchmark to advance the state of the art and foster progress in image SR.
Abstract:Deep neural networks (DNNs) have delivered a remarkable performance in many tasks of computer vision. However, over-parameterized representations of popular architectures dramatically increase their computational complexity and storage costs, and hinder their availability in edge devices with constrained resources. Regardless of many tensor decomposition (TD) methods that have been well-studied for compressing DNNs to learn compact representations, they suffer from non-negligible performance degradation in practice. In this paper, we propose Scalable Tensorizing Networks (STN), which dynamically and adaptively adjust the model size and decomposition structure without retraining. First, we account for compression during training by adding a low-rank regularizer to guarantee networks' desired low-rank characteristics in full tensor format. Then, considering network layers exhibit various low-rank structures, STN is obtained by a data-driven adaptive TD approach, for which the topological structure of decomposition per layer is learned from the pre-trained model, and the ranks are selected appropriately under specified storage constraints. As a result, STN is compatible with arbitrary network architectures and achieves higher compression performance and flexibility over other tensorizing versions. Comprehensive experiments on several popular architectures and benchmarks substantiate the superiority of our model towards improving parameter efficiency.