Abstract:Large language models (LLMs) have democratized software development, reducing the expertise barrier for programming complex applications. This accessibility extends to malicious software development, raising significant security concerns. While LLM providers have implemented alignment mechanisms to prevent direct generation of overtly malicious code, these safeguards predominantly evaluate individual prompts in isolation, overlooking a critical vulnerability: malicious operations can be systematically decomposed into benign-appearing sub-tasks. In this paper, we introduce the Malware Generation Compiler (MGC), a novel framework that leverages this vulnerability through modular decomposition and alignment-evasive generation. MGC employs a specialized Malware Description Intermediate Representation (MDIR) to bridge high-level malicious intents and benign-appearing code snippets. Extensive evaluation demonstrates that our attack reliably generates functional malware across diverse task specifications and categories, outperforming jailbreaking methods by +365.79% and underground services by +78.07% in correctness on three benchmark datasets. Case studies further show that MGC can reproduce and even enhance 16 real-world malware samples. This work provides critical insights for security researchers by exposing the risks of compositional attacks against aligned AI systems. Demonstrations are available at https://sites.google.com/view/malware-generation-compiler.
Abstract:Large Language Models (LLMs) have become prevalent across diverse sectors, transforming human life with their extraordinary reasoning and comprehension abilities. As they find increased use in sensitive tasks, safety concerns have gained widespread attention. Extensive efforts have been dedicated to aligning LLMs with human moral principles to ensure their safe deployment. Despite their potential, recent research indicates aligned LLMs are prone to specialized jailbreaking prompts that bypass safety measures to elicit violent and harmful content. The intrinsic discrete nature and substantial scale of contemporary LLMs pose significant challenges in automatically generating diverse, efficient, and potent jailbreaking prompts, representing a continuous obstacle. In this paper, we introduce RIPPLE (Rapid Optimization via Subconscious Exploitation and Echopraxia), a novel optimization-based method inspired by two psychological concepts: subconsciousness and echopraxia, which describe the processes of the mind that occur without conscious awareness and the involuntary mimicry of actions, respectively. Evaluations across 6 open-source LLMs and 4 commercial LLM APIs show RIPPLE achieves an average Attack Success Rate of 91.5\%, outperforming five current methods by up to 47.0\% with an 8x reduction in overhead. Furthermore, it displays significant transferability and stealth, successfully evading established detection mechanisms. The code of our work is available at \url{https://github.com/SolidShen/RIPPLE_official/tree/official}
Abstract:n clinical, if a patient presents with nonmechanical obstructive dysphagia, esophageal chest pain, and gastro esophageal reflux symptoms, the physician will usually assess the esophageal dynamic function. High-resolution manometry (HRM) is a clinically commonly used technique for detection of esophageal dynamic function comprehensively and objectively. However, after the results of HRM are obtained, doctors still need to evaluate by a variety of parameters. This work is burdensome, and the process is complex. We conducted image processing of HRM to predict the esophageal contraction vigor for assisting the evaluation of esophageal dynamic function. Firstly, we used Feature-Extraction and Histogram of Gradients (FE-HOG) to analyses feature of proposal of swallow (PoS) to further extract higher-order features. Then we determine the classification of esophageal contraction vigor normal, weak and failed by using linear-SVM according to these features. Our data set includes 3000 training sets, 500 validation sets and 411 test sets. After verification our accuracy reaches 86.83%, which is higher than other common machine learning methods.
Abstract:Backdoor attacks have emerged as a prominent threat to natural language processing (NLP) models, where the presence of specific triggers in the input can lead poisoned models to misclassify these inputs to predetermined target classes. Current detection mechanisms are limited by their inability to address more covert backdoor strategies, such as style-based attacks. In this work, we propose an innovative test-time poisoned sample detection framework that hinges on the interpretability of model predictions, grounded in the semantic meaning of inputs. We contend that triggers (e.g., infrequent words) are not supposed to fundamentally alter the underlying semantic meanings of poisoned samples as they want to stay stealthy. Based on this observation, we hypothesize that while the model's predictions for paraphrased clean samples should remain stable, predictions for poisoned samples should revert to their true labels upon the mutations applied to triggers during the paraphrasing process. We employ ChatGPT, a state-of-the-art large language model, as our paraphraser and formulate the trigger-removal task as a prompt engineering problem. We adopt fuzzing, a technique commonly used for unearthing software vulnerabilities, to discover optimal paraphrase prompts that can effectively eliminate triggers while concurrently maintaining input semantics. Experiments on 4 types of backdoor attacks, including the subtle style backdoors, and 4 distinct datasets demonstrate that our approach surpasses baseline methods, including STRIP, RAP, and ONION, in precision and recall.