Abstract:Vision Transformers (ViTs) have achieved impressive results in computer vision by leveraging self-attention to model long-range dependencies. However, their emphasis on global context often comes at the expense of local feature extraction in small datasets, particularly due to the lack of key inductive biases such as locality and translation equivariance. To mitigate this, we propose CoSwin, a novel feature-fusion architecture that augments the hierarchical shifted window attention with localized convolutional feature learning. Specifically, CoSwin integrates a learnable local feature enhancement module into each attention block, enabling the model to simultaneously capture fine-grained spatial details and global semantic structure. We evaluate CoSwin on multiple image classification benchmarks including CIFAR-10, CIFAR-100, MNIST, SVHN, and Tiny ImageNet. Our experimental results show consistent performance gains over state-of-the-art convolutional and transformer-based models. Notably, CoSwin achieves improvements of 2.17% on CIFAR-10, 4.92% on CIFAR-100, 0.10% on MNIST, 0.26% on SVHN, and 4.47% on Tiny ImageNet over the baseline Swin Transformer. These improvements underscore the effectiveness of local-global feature fusion in enhancing the generalization and robustness of transformers for small-scale vision. Code and pretrained weights available at https://github.com/puskal-khadka/coswin
Abstract:Underwater Passive Acoustic Monitoring (UPAM) provides rich spatiotemporal data for long-term ecological analysis, but intrinsic noise and complex signal dependencies hinder model stability and generalization. Multilayered windowing has improved target sound localization, yet variability from shifting ambient noise, diverse propagation effects, and mixed biological and anthropogenic sources demands robust architectures and rigorous evaluation. We introduce GetNetUPAM, a hierarchical nested cross-validation framework designed to quantify model stability under ecologically realistic variability. Data are partitioned into distinct site-year segments, preserving recording heterogeneity and ensuring each validation fold reflects a unique environmental subset, reducing overfitting to localized noise and sensor artifacts. Site-year blocking enforces evaluation against genuine environmental diversity, while standard cross-validation on random subsets measures generalization across UPAM's full signal distribution, a dimension absent from current benchmarks. Using GetNetUPAM as the evaluation backbone, we propose the Adaptive Resolution Pooling and Attention Network (ARPA-N), a neural architecture for irregular spectrogram dimensions. Adaptive pooling with spatial attention extends the receptive field, capturing global context without excessive parameters. Under GetNetUPAM, ARPA-N achieves a 14.4% gain in average precision over DenseNet baselines and a log2-scale order-of-magnitude drop in variability across all metrics, enabling consistent detection across site-year folds and advancing scalable, accurate bioacoustic monitoring.
Abstract:Adversarial attacks exploit the vulnerabilities of convolutional neural networks by introducing imperceptible perturbations that lead to misclassifications, exposing weaknesses in feature representations and decision boundaries. This paper presents a novel framework combining supervised contrastive learning and margin-based contrastive loss to enhance adversarial robustness. Supervised contrastive learning improves the structure of the feature space by clustering embeddings of samples within the same class and separating those from different classes. Margin-based contrastive loss, inspired by support vector machines, enforces explicit constraints to create robust decision boundaries with well-defined margins. Experiments on the CIFAR-100 dataset with a ResNet-18 backbone demonstrate robustness performance improvements in adversarial accuracy under Fast Gradient Sign Method attacks.
Abstract:This paper explores the intricate relationship between interpretability and robustness in deep learning models. Despite their remarkable performance across various tasks, deep learning models often exhibit critical vulnerabilities, including susceptibility to adversarial attacks, over-reliance on spurious correlations, and a lack of transparency in their decision-making processes. To address these limitations, we propose a novel framework that leverages Local Interpretable Model-Agnostic Explanations (LIME) to systematically enhance model robustness. By identifying and mitigating the influence of irrelevant or misleading features, our approach iteratively refines the model, penalizing reliance on these features during training. Empirical evaluations on multiple benchmark datasets demonstrate that LIME-guided refinement not only improves interpretability but also significantly enhances resistance to adversarial perturbations and generalization to out-of-distribution data.
Abstract:Cognitive radio networks (CRNs) have traditionally focused on utilizing idle channels to enhance spectrum efficiency. However, as wireless networks grow denser, channel-centric strategies face increasing limitations. This paper introduces a paradigm shift by exploring the underutilized potential of idle spatial dimensions, termed idle space, in co-channel transmissions. By integrating massive multiple-input multiple-output (MIMO) systems with signal alignment techniques, we enable secondary users to transmit without causing interference to primary users by aligning their signals within the null spaces of primary receivers. We propose a comprehensive framework that synergizes spatial spectrum sensing, signal alignment, and resource allocation, specifically designed for secondary users in CRNs. Theoretical analyses and extensive simulations validate the framework, demonstrating substantial gains in spectrum efficiency, throughput, and interference mitigation. The results show that the proposed approach not only ensures interference-free coexistence with primary users but also unlocks untapped spatial resources for secondary transmissions.
Abstract:The resilience of convolutional neural networks against input variations and adversarial attacks remains a significant challenge in image recognition tasks. Motivated by the need for more robust and reliable image recognition systems, we propose the Dense Cross-Connected Ensemble Convolutional Neural Network (DCC-ECNN). This novel architecture integrates the dense connectivity principle of DenseNet with the ensemble learning strategy, incorporating intermediate cross-connections between different DenseNet paths to facilitate extensive feature sharing and integration. The DCC-ECNN architecture leverages DenseNet's efficient parameter usage and depth while benefiting from the robustness of ensemble learning, ensuring a richer and more resilient feature representation.
Abstract:Understanding the inner working mechanism of deep neural networks (DNNs) is essential and important for researchers to design and improve the performance of DNNs. In this work, the entropy analysis is leveraged to study the neurons activation behavior of the fully connected layers of DNNs. The entropy of the activation patterns of each layer can provide a performance metric for the evaluation of the network model accuracy. The study is conducted based on a well trained network model. The activation patterns of shallow and deep layers of the fully connected layers are analyzed by inputting the images of a single class. It is found that for the well trained deep neural networks model, the entropy of the neuron activation pattern is monotonically reduced with the depth of the layers. That is, the neuron activation patterns become more and more stable with the depth of the fully connected layers. The entropy pattern of the fully connected layers can also provide guidelines as to how many fully connected layers are needed to guarantee the accuracy of the model. The study in this work provides a new perspective on the analysis of DNN, which shows some interesting results.