Abstract:Taxonomies and ontologies of research topics (e.g., MeSH, UMLS, CSO, NLM) play a central role in providing the primary framework through which intelligent systems can explore and interpret the literature. However, these resources have traditionally been manually curated, a process that is time-consuming, prone to obsolescence, and limited in granularity. This paper presents Sci-OG, a semi-auto\-mated methodology for generating research topic ontologies, employing a multi-step approach: 1) Topic Discovery, extracting potential topics from research papers; 2) Relationship Classification, determining semantic relationships between topic pairs; and 3) Ontology Construction, refining and organizing topics into a structured ontology. The relationship classification component, which constitutes the core of the system, integrates an encoder-based language model with features describing topic occurrence in the scientific literature. We evaluate this approach against a range of alternative solutions using a dataset of 21,649 manually annotated semantic triples. Our method achieves the highest F1 score (0.951), surpassing various competing approaches, including a fine-tuned SciBERT model and several LLM baselines, such as the fine-tuned GPT4-mini. Our work is corroborated by a use case which illustrates the practical application of our system to extend the CSO ontology in the area of cybersecurity. The presented solution is designed to improve the accessibility, organization, and analysis of scientific knowledge, thereby supporting advancements in AI-enabled literature management and research exploration.
Abstract:Minority languages are vital to preserving cultural heritage, yet they face growing risks of extinction due to limited digital resources and the dominance of artificial intelligence models trained on high-resource languages. This white paper proposes a framework to generate linguistic tools for low-resource languages, focusing on data creation to support the development of language models that can aid in preservation efforts. Sardinian, an endangered language, serves as the case study to demonstrate the framework's effectiveness. By addressing the data scarcity that hinders intelligent applications for such languages, we contribute to promoting linguistic diversity and support ongoing efforts in language standardization and revitalization through modern technologies.
Abstract:In the current digitalization era, capturing and effectively representing knowledge is crucial in most real-world scenarios. In this context, knowledge graphs represent a potent tool for retrieving and organizing a vast amount of information in a properly interconnected and interpretable structure. However, their generation is still challenging and often requires considerable human effort and domain expertise, hampering the scalability and flexibility across different application fields. This paper proposes an innovative knowledge graph generation approach that leverages the potential of the latest generative large language models, such as GPT-3.5, that can address all the main critical issues in knowledge graph building. The approach is conveyed in a pipeline that comprises novel iterative zero-shot and external knowledge-agnostic strategies in the main stages of the generation process. Our unique manifold approach may encompass significant benefits to the scientific community. In particular, the main contribution can be summarized by: (i) an innovative strategy for iteratively prompting large language models to extract relevant components of the final graph; (ii) a zero-shot strategy for each prompt, meaning that there is no need for providing examples for "guiding" the prompt result; (iii) a scalable solution, as the adoption of LLMs avoids the need for any external resources or human expertise. To assess the effectiveness of our proposed model, we performed experiments on a dataset that covered a specific domain. We claim that our proposal is a suitable solution for scalable and versatile knowledge graph construction and may be applied to different and novel contexts.