Abstract:When language model (LM) users aim to improve the quality of its generations, it is crucial to specify concrete behavioral attributes that the model should strive to reflect. However, curating such principles across many domains, even non-exhaustively, requires a labor-intensive annotation process. To automate this process, we propose eliciting these latent attributes guiding model reasoning towards human-preferred responses by explicitly modeling them in a self-correction setting. Our approach mines new principles from the LM itself and compresses the discovered elements to an interpretable set via clustering. Specifically, we employ an approximation of posterior-regularized Monte Carlo Expectation-Maximization to both identify a condensed set of the most effective latent principles and teach the LM to strategically invoke them in order to intrinsically refine its responses. We demonstrate that bootstrapping our algorithm over multiple iterations enables smaller language models (7-8B parameters) to self-improve, achieving +8-10% in AlpacaEval win-rate, an average of +0.3 on MT-Bench, and +19-23% in principle-following win-rate on IFEval. We also show that clustering the principles yields interpretable and diverse model-generated constitutions while retaining model performance. The gains our method achieves highlight the potential of automated, principle-driven post-training recipes toward continual self-improvement.
Abstract:Language models are increasingly being used in important decision pipelines, so ensuring the correctness of their outputs is crucial. Recent work has proposed evaluating the "factuality" of claims decomposed from a language model generation and applying conformal prediction techniques to filter out those claims that are not factual. This can be effective for tasks such as information retrieval, where constituent claims may be evaluated in isolation for factuality, but is not appropriate for reasoning tasks, as steps of a logical argument can be evaluated for correctness only within the context of the claims that precede them. To capture this, we define "coherent factuality" and develop a conformal-prediction-based method to guarantee coherent factuality for language model outputs. Our approach applies split conformal prediction to subgraphs within a "deducibility" graph" that represents the steps of a reasoning problem. We evaluate our method on mathematical reasoning problems from the MATH and FELM datasets and find that our algorithm consistently produces correct and substantiated orderings of claims, achieving coherent factuality across target coverage levels. Moreover, we achieve 90% factuality on our stricter definition while retaining 80% or more of the original claims, highlighting the utility of our deducibility-graph-guided approach.
Abstract:It is often desirable for Large Language Models (LLMs) to capture multiple objectives when providing a response. In document-grounded response generation, for example, agent responses are expected to be relevant to a user's query while also being grounded in a given document. In this paper, we introduce Proxy Metric-based Self-Refinement (ProMiSe), which enables an LLM to refine its own initial response along key dimensions of quality guided by external metrics feedback, yielding an overall better final response. ProMiSe leverages feedback on response quality through principle-specific proxy metrics, and iteratively refines its response one principle at a time. We apply ProMiSe to open source language models Flan-T5-XXL and Llama-2-13B-Chat, to evaluate its performance on document-grounded question answering datasets, MultiDoc2Dial and QuAC, demonstrating that self-refinement improves response quality. We further show that fine-tuning Llama-2-13B-Chat on the synthetic dialogue data generated by ProMiSe yields significant performance improvements over the zero-shot baseline as well as a supervised fine-tuned model on human annotated data.