Abstract:Resilience and power consumption are two important performance metrics for many modern communication systems, and it is therefore important to define, analyze, and optimize them. In this work, we consider a wireless communication system with secret-key generation, in which the secret-key bits are added to and used from a pool of available key bits. We propose novel physical layer resilience metrics for the survivability of such systems. In addition, we propose multiple power allocation schemes and analyze their trade-off between resilience and power consumption. In particular, we investigate and compare constant power allocation, an adaptive analytical algorithm, and a reinforcement learning-based solution. It is shown how the transmit power can be minimized such that a specified resilience is guaranteed. These results can be used directly by designers of such systems to optimize the system parameters for the desired performance in terms of reliability, security, and resilience.
Abstract:Millimeter wave (mmWave) cell-free massive MIMO (CF mMIMO) is a promising solution for future wireless communications. However, its optimization is non-trivial due to the challenging channel characteristics. We show that mmWave CF mMIMO optimization is largely an assignment problem between access points (APs) and users due to the high path loss of mmWave channels, the limited output power of the amplifier, and the almost orthogonal channels between users given a large number of AP antennas. The combinatorial nature of the assignment problem, the requirement for scalability, and the distributed implementation of CF mMIMO make this problem difficult. In this work, we propose an unsupervised machine learning (ML) enabled solution. In particular, a graph neural network (GNN) customized for scalability and distributed implementation is introduced. Moreover, the customized GNN architecture is hierarchically permutation-equivariant (HPE), i.e., if the APs or users of an AP are permuted, the output assignment is automatically permuted in the same way. To address the combinatorial problem, we relax it to a continuous problem, and introduce an information entropy-inspired penalty term. The training objective is then formulated using the augmented Lagrangian method (ALM). The test results show that the realized sum-rate outperforms that of the generalized serial dictatorship (GSD) algorithm and is very close to the upper bound in a small network scenario, while the upper bound is impossible to obtain in a large network scenario.
Abstract:Multiple access techniques are cornerstones of wireless communications. Their performance depends on the channel properties, which can be improved by reconfigurable intelligent surfaces (RISs). In this work, we jointly optimize MA precoding at the base station (BS) and RIS configuration. We tackle difficulties of mutual coupling between RIS elements, scalability to more than 1000 RIS elements, and channel estimation. We first derive an RIS-assisted channel model considering mutual coupling, then propose an unsupervised machine learning (ML) approach to optimize the RIS. In particular, we design a dedicated neural network (NN) architecture RISnet with good scalability and desired symmetry. Moreover, we combine ML-enabled RIS configuration and analytical precoding at BS since there exist analytical precoding schemes. Furthermore, we propose another variant of RISnet, which requires the channel state information (CSI) of a small portion of RIS elements (in this work, 16 out of 1296 elements) if the channel comprises a few specular propagation paths. More generally, this work is an early contribution to combine ML technique and domain knowledge in communication for NN architecture design. Compared to generic ML, the problem-specific ML can achieve higher performance, lower complexity and symmetry.
Abstract:In modern cell-less wireless networks, mobility management is undergoing a significant transformation, transitioning from single-link handover management to a more adaptable multi-connectivity cluster reconfiguration approach, including often conflicting objectives like energy-efficient power allocation and satisfying varying reliability requirements. In this work, we address the challenge of dynamic clustering and power allocation for unmanned aerial vehicle (UAV) communication in wireless interference networks. Our objective encompasses meeting varying reliability demands, minimizing power consumption, and reducing the frequency of cluster reconfiguration. To achieve these objectives, we introduce a novel approach based on reinforcement learning using a masked soft actor-critic algorithm, specifically tailored for dynamic clustering and power allocation.
Abstract:Modern communication systems need to fulfill multiple and often conflicting objectives at the same time. In particular, new applications require high reliability while operating at low transmit powers. Moreover, reliability constraints may vary over time depending on the current state of the system. One solution to address this problem is to use joint transmissions from a number of base stations (BSs) to meet the reliability requirements. However, this approach is inefficient when considering the overall total transmit power. In this work, we propose a reinforcement learning-based power allocation scheme for an unmanned aerial vehicle (UAV) communication system with varying communication reliability requirements. In particular, the proposed scheme aims to minimize the total transmit power of all BSs while achieving an outage probability that is less than a tolerated threshold. This threshold varies over time, e.g., when the UAV enters a critical zone with high-reliability requirements. Our results show that the proposed learning scheme uses dynamic power allocation to meet varying reliability requirements, thus effectively conserving energy.
Abstract:The reconfigurable intelligent surface (RIS) is a promising technology that enables wireless communication systems to achieve improved performance by intelligently manipulating wireless channels. In this paper, we consider the sum-rate maximization problem in a downlink multi-user multi-input-single-output (MISO) channel via space-division multiple access (SDMA). Two major challenges of this problem are the high dimensionality due to the large number of RIS elements and the difficulty to obtain the full channel state information (CSI), which is assumed known in many algorithms proposed in the literature. Instead, we propose a hybrid machine learning approach using the weighted minimum mean squared error (WMMSE) precoder at the base station (BS) and a dedicated neural network (NN) architecture, RISnet, for RIS configuration. The RISnet has a good scalability to optimize 1296 RIS elements and requires partial CSI of only 16 RIS elements as input. We show it achieves a high performance with low requirement for channel estimation for geometric channel models obtained with ray-tracing simulation. The unsupervised learning lets the RISnet find an optimized RIS configuration by itself. Numerical results show that a trained model configures the RIS with low computational effort, considerably outperforms the baselines, and can work with discrete phase shifts.
Abstract:We introduce a phase hopping scheme for reconfigurable intelligent surfaces (RISs) in which the phases of the individual RIS elements are randomly varied with each transmitted symbol. This effectively converts slow fading into fast fading. We show how this can be leveraged to significantly improve the outage performance and even achieve an outage probability of zero at a positive data rate without channel state information (CSI) at the transmitter and RIS. Furthermore, the same result can be accomplished even if only two possible phase values are available. Since we do not require perfect CSI at the transmitter or RIS, the proposed scheme has no additional communication overhead for adjusting the phases. This enables robust ultra-reliable communications with a reduced effort for channel estimation.