Abstract:Autonomous mobile manipulation in unstructured warehouses requires a balance between efficient large-scale navigation and high-precision object interaction. Traditional end-to-end learning approaches often struggle to handle the conflicting demands of these distinct phases. Navigation relies on robust decision-making over large spaces, while manipulation needs high sensitivity to fine local details. Forcing a single network to learn these different objectives simultaneously often causes optimization interference, where improving one task degrades the other. To address these limitations, we propose a Heterogeneous Multi-Expert Reinforcement Learning (HMER) framework tailored for autonomous forklifts. HMER decomposes long-horizon tasks into specialized sub-policies controlled by a Semantic Task Planner. This structure separates macro-level navigation from micro-level manipulation, allowing each expert to focus on its specific action space without interference. The planner coordinates the sequential execution of these experts, bridging the gap between task planning and continuous control. Furthermore, to solve the problem of sparse exploration, we introduce a Hybrid Imitation-Reinforcement Training Strategy. This method uses expert demonstrations to initialize the policy and Reinforcement Learning for fine-tuning. Experiments in Gazebo simulations show that HMER significantly outperforms sequential and end-to-end baselines. Our method achieves a task success rate of 94.2\% (compared to 62.5\% for baselines), reduces operation time by 21.4\%, and maintains placement error within 1.5 cm, validating its efficacy for precise material handling.
Abstract:Automated Theorem Proving (ATP) represents a fundamental challenge in Artificial Intelligence (AI), requiring the construction of machine-verifiable proofs in formal languages such as Lean to evaluate AI reasoning capabilities. Reinforcement learning (RL), particularly the high-performance Group Relative Policy Optimization (GRPO) algorithm, has emerged as a mainstream approach for this task. However, in ATP scenarios, GRPO faces two critical issues: when composite rewards are used, its relative advantage estimation may conflict with the binary feedback from the formal verifier; meanwhile, its static sampling strategy may discard entire batches of data if no valid proof is found, resulting in zero contribution to model updates and significant data waste. To address these limitations, we propose Group Dual-dynamic and Equal-right-advantage Policy Optimization (GDEPO), a method incorporating three core mechanisms: 1) dynamic additional sampling, which resamples invalid batches until a valid proof is discovered; 2) equal-right advantage, decoupling the sign of the advantage function (based on correctness) from its magnitude (modulated by auxiliary rewards) to ensure stable and correct policy updates; and 3) dynamic additional iterations, applying extra gradient steps to initially failed but eventually successful samples to accelerate learning on challenging cases. Experiments conducted on three datasets of varying difficulty (MinF2F-test, MathOlympiadBench, PutnamBench) confirm the effectiveness of GDEPO, while ablation studies validate the necessity of its synergistic components. The proposed method enhances data utilization and optimization efficiency, offering a novel training paradigm for ATP.