Abstract:Reliable recognition and localization of surgical instruments in endoscopic video recordings are foundational for a wide range of applications in computer- and robot-assisted minimally invasive surgery (RAMIS), including surgical training, skill assessment, and autonomous assistance. However, robust performance under real-world conditions remains a significant challenge. Incorporating surgical context - such as the current procedural phase - has emerged as a promising strategy to improve robustness and interpretability. To address these challenges, we organized the Surgical Procedure Phase, Keypoint, and Instrument Recognition (PhaKIR) sub-challenge as part of the Endoscopic Vision (EndoVis) challenge at MICCAI 2024. We introduced a novel, multi-center dataset comprising thirteen full-length laparoscopic cholecystectomy videos collected from three distinct medical institutions, with unified annotations for three interrelated tasks: surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation. Unlike existing datasets, ours enables joint investigation of instrument localization and procedural context within the same data while supporting the integration of temporal information across entire procedures. We report results and findings in accordance with the BIAS guidelines for biomedical image analysis challenges. The PhaKIR sub-challenge advances the field by providing a unique benchmark for developing temporally aware, context-driven methods in RAMIS and offers a high-quality resource to support future research in surgical scene understanding.
Abstract:The growing demand for robots to operate effectively in diverse environments necessitates the need for robust real-time anomaly detection techniques during robotic operations. However, deep learning-based models in robotics face significant challenges due to limited training data and highly noisy signal features. In this paper, we present Sparse Masked Autoregressive Flow-based Adversarial AutoEncoders model to address these problems. This approach integrates Masked Autoregressive Flow model into Adversarial AutoEncoders to construct a flexible latent space and utilize Sparse autoencoder to efficiently focus on important features, even in scenarios with limited feature space. Our experiments demonstrate that the proposed model achieves a 4.96% to 9.75% higher area under the receiver operating characteristic curve for pick-and-place robotic operations with randomly placed cans, compared to existing state-of-the-art methods. Notably, it showed up to 19.67% better performance in scenarios involving collisions with lightweight objects. Additionally, unlike the existing state-of-the-art model, our model performs inferences within 1 millisecond, ensuring real-time anomaly detection. These capabilities make our model highly applicable to machine learning-based robotic safety systems in dynamic environments. The code will be made publicly available after acceptance.
Abstract:Surgical instrument segmentation (SIS) is an essential task in computer-assisted surgeries, with deep learning-based research improving accuracy in complex environments. Recently, text-promptable segmentation methods have been introduced to generate masks based on text prompts describing target objects. However, these methods assume that the object described by a given text prompt exists in the scene. This results in mask generation whenever a related text prompt is provided, even if the object is absent from the image. Existing methods handle this by using prompts only for objects known to be present in the image, which introduces inaccessible information in a vision-based method setting and results in unfair comparisons. For fair comparison, we redefine existing text-promptable SIS settings to robust conditions, called Robust text-promptable SIS (R-SIS), designed to forward prompts of all classes and determine the existence of an object from a given text prompt for the fair comparison. Furthermore, we propose a novel framework, Robust Surgical Instrument Segmentation (RoSIS), which combines visual and language features for promptable segmentation in the R-SIS setting. RoSIS employs an encoder-decoder architecture with a Multi-Modal Fusion Block (MMFB) and a Selective Gate Block (SGB) to achieve balanced integration of vision and language features. Additionally, we introduce an iterative inference strategy that refines segmentation masks in two steps: an initial pass using name-based prompts, followed by a refinement step using location prompts. Experiments on various datasets and settings demonstrate that RoSIS outperforms existing vision-based and promptable methods under robust conditions.