Abstract:Non-Intrusive Load Monitoring (NILM) offers a cost-effective method to obtain fine-grained appliance-level energy consumption in smart homes and building applications. However, the increasing adoption of behind-the-meter energy sources, such as solar panels and battery storage, poses new challenges for conventional NILM methods that rely solely on at-the-meter data. The injected energy from the behind-the-meter sources can obscure the power signatures of individual appliances, leading to a significant decline in NILM performance. To address this challenge, we present DualNILM, a deep multi-task learning framework designed for the dual tasks of appliance state recognition and injected energy identification in NILM. By integrating sequence-to-point and sequence-to-sequence strategies within a Transformer-based architecture, DualNILM can effectively capture multi-scale temporal dependencies in the aggregate power consumption patterns, allowing for accurate appliance state recognition and energy injection identification. We conduct validation of DualNILM using both self-collected and synthesized open NILM datasets that include both appliance-level energy consumption and energy injection. Extensive experimental results demonstrate that DualNILM maintains an excellent performance for the dual tasks in NILM, much outperforming conventional methods.
Abstract:Non-intrusive Load Monitoring (NILM) aims to disaggregate aggregate household electricity consumption into individual appliance usage, enabling more effective energy management. While deep learning has advanced NILM, it remains limited by its dependence on labeled data, restricted generalization, and lack of interpretability. In this paper, we introduce the first prompt-based NILM framework that leverages Large Language Models (LLMs) with in-context learning. We design and evaluate prompt strategies that integrate appliance features, timestamps and contextual information, as well as representative time-series examples, using the REDD dataset. With optimized prompts, LLMs achieve competitive state detection accuracy, reaching an average F1-score of 0.676 on unseen households, and demonstrate robust generalization without the need for fine-tuning. LLMs also enhance interpretability by providing clear, human-readable explanations for their predictions. Our results show that LLMs can reduce data requirements, improve adaptability, and provide transparent energy disaggregation in NILM applications.