Abstract:Underwater scene reconstruction is a critical tech-nology for underwater operations, enabling the generation of 3D models from images captured by underwater platforms. However, the quality of underwater images is often degraded due to medium interference, which limits the effectiveness of Structure-from-Motion (SfM) pose estimation, leading to subsequent reconstruction failures. Additionally, SfM methods typically operate at slower speeds, further hindering their applicability in real-time scenarios. In this paper, we introduce AquaGS, an SfM-free underwater scene reconstruction model based on the SeaThru algorithm, which facilitates rapid and accurate separation of scene details and medium features. Our approach initializes Gaussians by integrating state-of-the-art multi-view stereo (MVS) technology, employs implicit Neural Radiance Fields (NeRF) for rendering translucent media and utilizes the latest explicit 3D Gaussian Splatting (3DGS) technique to render object surfaces, which effectively addresses the limitations of traditional methods and accurately simulates underwater optical phenomena. Experimental results on the data set and the robot platform show that our model can complete high-precision reconstruction in 30 seconds with only 3 image inputs, significantly enhancing the practical application of the algorithm in robotic platforms.
Abstract:Aligning powerful AI models on tasks that surpass human evaluation capabilities is the central problem of \textbf{superalignment}. To address this problem, weak-to-strong generalization aims to elicit the capabilities of strong models through weak supervisors and ensure that the behavior of strong models aligns with the intentions of weak supervisors without unsafe behaviors such as deception. Although weak-to-strong generalization exhibiting certain generalization capabilities, strong models exhibit significant overfitting in weak-to-strong generalization: Due to the strong fit ability of strong models, erroneous labels from weak supervisors may lead to overfitting in strong models. In addition, simply filtering out incorrect labels may lead to a degeneration in question quality, resulting in a weak generalization ability of strong models on hard questions. To mitigate overfitting in weak-to-strong generalization, we propose a two-stage framework that simultaneously improves the quality of supervision signals and the quality of input questions. Experimental results in three series of large language models and two mathematical benchmarks demonstrate that our framework significantly improves PGR compared to naive weak-to-strong generalization, even achieving up to 100\% PGR on some models.