Abstract:In real-world scenarios, image recognition tasks, such as semantic segmentation and object detection, often pose greater challenges due to the lack of information available within low-resolution (LR) content. Image super-resolution (SR) is one of the promising solutions for addressing the challenges. However, due to the ill-posed property of SR, it is challenging for typical SR methods to restore task-relevant high-frequency contents, which may dilute the advantage of utilizing the SR method. Therefore, in this paper, we propose Super-Resolution for Image Recognition (SR4IR) that effectively guides the generation of SR images beneficial to achieving satisfactory image recognition performance when processing LR images. The critical component of our SR4IR is the task-driven perceptual (TDP) loss that enables the SR network to acquire task-specific knowledge from a network tailored for a specific task. Moreover, we propose a cross-quality patch mix and an alternate training framework that significantly enhances the efficacy of the TDP loss by addressing potential problems when employing the TDP loss. Through extensive experiments, we demonstrate that our SR4IR achieves outstanding task performance by generating SR images useful for a specific image recognition task, including semantic segmentation, object detection, and image classification. The implementation code is available at https://github.com/JaehaKim97/SR4IR.
Abstract:Image restoration tasks have witnessed great performance improvement in recent years by developing large deep models. Despite the outstanding performance, the heavy computation demanded by the deep models has restricted the application of image restoration. To lift the restriction, it is required to reduce the size of the networks while maintaining accuracy. Recently, N:M structured pruning has appeared as one of the effective and practical pruning approaches for making the model efficient with the accuracy constraint. However, it fails to account for different computational complexities and performance requirements for different layers of an image restoration network. To further optimize the trade-off between the efficiency and the restoration accuracy, we propose a novel pruning method that determines the pruning ratio for N:M structured sparsity at each layer. Extensive experimental results on super-resolution and deblurring tasks demonstrate the efficacy of our method which outperforms previous pruning methods significantly. PyTorch implementation for the proposed methods will be publicly available at https://github.com/JungHunOh/SLS_CVPR2022.
Abstract:The goal of filter pruning is to search for unimportant filters to remove in order to make convolutional neural networks (CNNs) efficient without sacrificing the performance in the process. The challenge lies in finding information that can help determine how important or relevant each filter is with respect to the final output of neural networks. In this work, we share our observation that the batch normalization (BN) parameters of pre-trained CNNs can be used to estimate the feature distribution of activation outputs, without processing of training data. Upon observation, we propose a simple yet effective filter pruning method by evaluating the importance of each filter based on the BN parameters of pre-trained CNNs. The experimental results on CIFAR-10 and ImageNet demonstrate that the proposed method can achieve outstanding performance with and without fine-tuning in terms of the trade-off between the accuracy drop and the reduction in computational complexity and number of parameters of pruned networks.
Abstract:Quantizing deep convolutional neural networks for image super-resolution substantially reduces their computational costs. However, existing works either suffer from a severe performance drop in ultra-low precision of 4 or lower bit-widths, or require a heavy fine-tuning process to recover the performance. To our knowledge, this vulnerability to low precisions relies on two statistical observations of feature map values. First, distribution of feature map values varies significantly per channel and per input image. Second, feature maps have outliers that can dominate the quantization error. Based on these observations, we propose a novel distribution-aware quantization scheme (DAQ) which facilitates accurate training-free quantization in ultra-low precision. A simple function of DAQ determines dynamic range of feature maps and weights with low computational burden. Furthermore, our method enables mixed-precision quantization by calculating the relative sensitivity of each channel, without any training process involved. Nonetheless, quantization-aware training is also applicable for auxiliary performance gain. Our new method outperforms recent training-free and even training-based quantization methods to the state-of-the-art image super-resolution networks in ultra-low precision.