Abstract:Reinforcement Learning with Verifiable Rewards~(RLVR) has become a prominent paradigm to enhance the capabilities (i.e.\ long-context) of Large Language Models~(LLMs). However, it often relies on gold-standard answers or explicit evaluation rubrics provided by powerful teacher models or human experts, which are costly and time-consuming. In this work, we investigate unsupervised approaches to enhance the long-context capabilities of LLMs, eliminating the need for heavy human annotations or teacher models' supervision. Specifically, we first replace a few paragraphs with special placeholders in a long document. LLMs are trained through reinforcement learning to reconstruct the document by correctly identifying and sequencing missing paragraphs from a set of candidate options. This training paradigm enables the model to capture global narrative coherence, significantly boosting long-context performance. We validate the effectiveness of our method on two widely used benchmarks, RULER and LongBench~v2. While acquiring noticeable gains on RULER, it can also achieve a reasonable improvement on LongBench~v2 without any manually curated long-context QA data. Furthermore, we conduct extensive ablation studies to analyze the impact of reward design, data curation strategies, training schemes, and data scaling effects on model performance. We publicly release our code, data, and models.
Abstract:Recent advances in large language models (LLMs) and multimodal LLMs (MLLMs) have led to strong reasoning ability across a wide range of tasks. However, their ability to perform mathematical reasoning from spoken input remains underexplored. Prior studies on speech modality have mostly focused on factual speech understanding or simple audio reasoning tasks, providing limited insight into logical step-by-step reasoning, such as that required for mathematical problem solving. To address this gap, we introduce Spoken Math Question Answering (Spoken-MQA), a new benchmark designed to evaluate the mathematical reasoning capabilities of speech-based models, including both cascade models (ASR + LLMs) and end-to-end speech LLMs. Spoken-MQA covers a diverse set of math problems, including pure arithmetic, single-step and multi-step contextual reasoning, and knowledge-oriented reasoning problems, all presented in unambiguous natural spoken language. Through extensive experiments, we find that: (1) while some speech LLMs perform competitively on contextual reasoning tasks involving basic arithmetic, they still struggle with direct arithmetic problems; (2) current LLMs exhibit a strong bias toward symbolic mathematical expressions written in LaTex and have difficulty interpreting verbalized mathematical expressions; and (3) mathematical knowledge reasoning abilities are significantly degraded in current speech LLMs.




Abstract:Large Language Models (LLMs) have shown strong performance in solving mathematical problems, with code-based solutions proving particularly effective. However, the best practice to leverage coding instruction data to enhance mathematical reasoning remains underexplored. This study investigates three key questions: (1) How do different coding styles of mathematical code-based rationales impact LLMs' learning performance? (2) Can general-domain coding instructions improve performance? (3) How does integrating textual rationales with code-based ones during training enhance mathematical reasoning abilities? Our findings reveal that code-based rationales with concise comments, descriptive naming, and hardcoded solutions are beneficial, while improvements from general-domain coding instructions and textual rationales are relatively minor. Based on these insights, we propose CoinMath, a learning strategy designed to enhance mathematical reasoning by diversifying the coding styles of code-based rationales. CoinMath generates a variety of code-based rationales incorporating concise comments, descriptive naming conventions, and hardcoded solutions. Experimental results demonstrate that CoinMath significantly outperforms its baseline model, MAmmoTH, one of the SOTA math LLMs.