Abstract:The integration of renewable and distributed energy resources reshapes modern power systems, challenging conventional protection schemes. This scoping review synthesizes recent literature on machine learning (ML) applications in power system protection and disturbance management, following the PRISMA for Scoping Reviews framework. Based on over 100 publications, three key objectives are addressed: (i) assessing the scope of ML research in protection tasks; (ii) evaluating ML performance across diverse operational scenarios; and (iii) identifying methods suitable for evolving grid conditions. ML models often demonstrate high accuracy on simulated datasets; however, their performance under real-world conditions remains insufficiently validated. The existing literature is fragmented, with inconsistencies in methodological rigor, dataset quality, and evaluation metrics. This lack of standardization hampers the comparability of results and limits the generalizability of findings. To address these challenges, this review introduces a ML-oriented taxonomy for protection tasks, resolves key terminological inconsistencies, and advocates for standardized reporting practices. It further provides guidelines for comprehensive dataset documentation, methodological transparency, and consistent evaluation protocols, aiming to improve reproducibility and enhance the practical relevance of research outcomes. Critical gaps remain, including the scarcity of real-world validation, insufficient robustness testing, and limited consideration of deployment feasibility. Future research should prioritize public benchmark datasets, realistic validation methods, and advanced ML architectures. These steps are essential to move ML-based protection from theoretical promise to practical deployment in increasingly dynamic and decentralized power systems.
Abstract:The widespread use of sensors in modern power grids has led to the accumulation of large amounts of voltage and current waveform data, especially during fault events. However, the lack of labeled datasets poses a significant challenge for fault classification and analysis. This paper explores the application of unsupervised clustering techniques for fault diagnosis in high-voltage power systems. A dataset provided by the Reseau de Transport d'Electricite (RTE) is analyzed, with frequency domain features extracted using the Fast Fourier Transform (FFT). The K-Means algorithm is then applied to identify underlying patterns in the data, enabling automated fault categorization without the need for labeled training samples. The resulting clusters are evaluated in collaboration with power system experts to assess their alignment with real-world fault characteristics. The results demonstrate the potential of unsupervised learning for scalable and data-driven fault analysis, providing a robust approach to detecting and classifying power system faults with minimal prior assumptions.
Abstract:Germany's transition to a renewable energy-based power system is reshaping grid operations, requiring advanced monitoring and control to manage decentralized generation. Machine learning (ML) has emerged as a powerful tool for power system protection, particularly for fault detection (FD) and fault line identification (FLI) in transmission grids. However, ML model reliability depends on data quality and availability. Data sparsity resulting from sensor failures, communication disruptions, or reduced sampling rates poses a challenge to ML-based FD and FLI. Yet, its impact has not been systematically validated prior to this work. In response, we propose a framework to assess the impact of data sparsity on ML-based FD and FLI performance. We simulate realistic data sparsity scenarios, evaluate their impact, derive quantitative insights, and demonstrate the effectiveness of this evaluation strategy by applying it to an existing ML-based framework. Results show the ML model remains robust for FD, maintaining an F1-score of 0.999 $\pm$ 0.000 even after a 50x data reduction. In contrast, FLI is more sensitive, with performance decreasing by 55.61% for missing voltage measurements and 9.73% due to communication failures at critical network points. These findings offer actionable insights for optimizing ML models for real-world grid protection. This enables more efficient FD and supports targeted improvements in FLI.