Abstract:Large language models (LLMs) have demonstrated impressive capabilities as autonomous agents with rapidly expanding applications in various domains. As these agents increasingly engage in socioeconomic interactions, identifying their potential for undesirable behavior becomes essential. In this work, we examine scenarios where they can choose to collude, defined as secretive cooperation that harms another party. To systematically study this, we investigate the behavior of LLM agents acting as sellers in simulated continuous double auction markets. Through a series of controlled experiments, we analyze how parameters such as the ability to communicate, choice of model, and presence of environmental pressures affect the stability and emergence of seller collusion. We find that direct seller communication increases collusive tendencies, the propensity to collude varies across models, and environmental pressures, such as oversight and urgency from authority figures, influence collusive behavior. Our findings highlight important economic and ethical considerations for the deployment of LLM-based market agents.
Abstract:Evaluating modern ML models is hard. The strong incentive for researchers and companies to report a state-of-the-art result on some metric often leads to questionable research practices (QRPs): bad practices which fall short of outright research fraud. We describe 43 such practices which can undermine reported results, giving examples where possible. Our list emphasises the evaluation of large language models (LLMs) on public benchmarks. We also discuss "irreproducible research practices", i.e. decisions that make it difficult or impossible for other researchers to reproduce, build on or audit previous research.