Abstract:Although recent Large Language Models (LLMs) have shown rapid improvement on reasoning benchmarks in English, the evaluation of such LLMs' multilingual reasoning capability across diverse languages and cultural contexts remains limited. Existing multilingual reasoning benchmarks are typically constructed by translating existing English reasoning benchmarks, biasing these benchmarks towards reasoning problems with context in English language/cultures. In this work, we introduce the Multilingual Native Reasoning Challenge (MultiNRC), a benchmark designed to assess LLMs on more than 1,000 native, linguistic and culturally grounded reasoning questions written by native speakers in French, Spanish, and Chinese. MultiNRC covers four core reasoning categories: language-specific linguistic reasoning, wordplay & riddles, cultural/tradition reasoning, and math reasoning with cultural relevance. For cultural/tradition reasoning and math reasoning with cultural relevance, we also provide English equivalent translations of the multilingual questions by manual translation from native speakers fluent in English. This set of English equivalents can provide a direct comparison of LLM reasoning capacity in other languages vs. English on the same reasoning questions. We systematically evaluate current 14 leading LLMs covering most LLM families on MultiNRC and its English equivalent set. The results show that (1) current LLMs are still not good at native multilingual reasoning, with none scoring above 50% on MultiNRC; (2) LLMs exhibit distinct strengths and weaknesses in handling linguistic, cultural, and logical reasoning tasks; (3) Most models perform substantially better in math reasoning in English compared to in original languages (+10%), indicating persistent challenges with culturally grounded knowledge.
Abstract:A recent increase in data availability has allowed the possibility to perform different statistical linguistic studies. Here we use the Google Books Ngram dataset to analyze word flow among English, French, German, Italian, and Spanish. We study what we define as ``migrant words'', a type of loanwords that do not change their spelling. We quantify migrant words from one language to another for different decades, and notice that most migrant words can be aggregated in semantic fields and associated to historic events. We also study the statistical properties of accumulated migrant words and their rank dynamics. We propose a measure of use of migrant words that could be used as a proxy of cultural influence. Our methodology is not exempt of caveats, but our results are encouraging to promote further studies in this direction.
Abstract:Statistical studies of languages have focused on the rank-frequency distribution of words. Instead, we introduce here a measure of how word ranks change in time and call this distribution \emph{rank diversity}. We calculate this diversity for books published in six European languages since 1800, and find that it follows a universal lognormal distribution. Based on the mean and standard deviation associated with the lognormal distribution, we define three different word regimes of languages: "heads" consist of words which almost do not change their rank in time, "bodies" are words of general use, while "tails" are comprised by context-specific words and vary their rank considerably in time. The heads and bodies reflect the size of language cores identified by linguists for basic communication. We propose a Gaussian random walk model which reproduces the rank variation of words in time and thus the diversity. Rank diversity of words can be understood as the result of random variations in rank, where the size of the variation depends on the rank itself. We find that the core size is similar for all languages studied.