MERL
Abstract:Head-related transfer functions (HRTFs) are important for immersive audio, and their spatial interpolation has been studied to upsample finite measurements. Recently, neural fields (NFs) which map from sound source direction to HRTF have gained attention. Existing NF-based methods focused on estimating the magnitude of the HRTF from a given sound source direction, and the magnitude is converted to a finite impulse response (FIR) filter. We propose the neural infinite impulse response filter field (NIIRF) method that instead estimates the coefficients of cascaded IIR filters. IIR filters mimic the modal nature of HRTFs, thus needing fewer coefficients to approximate them well compared to FIR filters. We find that our method can match the performance of existing NF-based methods on multiple datasets, even outperforming them when measurements are sparse. We also explore approaches to personalize the NF to a subject and experimentally find low-rank adaptation to be effective.
Abstract:Diffusion models are receiving a growing interest for a variety of signal generation tasks such as speech or music synthesis. WaveGrad, for example, is a successful diffusion model that conditionally uses the mel spectrogram to guide a diffusion process for the generation of high-fidelity audio. However, such models face important challenges concerning the noise diffusion process for training and inference, and they have difficulty generating high-quality speech for speakers that were not seen during training. With the aim of minimizing the conditioning error and increasing the efficiency of the noise diffusion process, we propose in this paper a new scheme called GLA-Grad, which consists in introducing a phase recovery algorithm such as the Griffin-Lim algorithm (GLA) at each step of the regular diffusion process. Furthermore, it can be directly applied to an already-trained waveform generation model, without additional training or fine-tuning. We show that our algorithm outperforms state-of-the-art diffusion models for speech generation, especially when generating speech for a previously unseen target speaker.
Abstract:Generative adversarial network (GAN) models can synthesize highquality audio signals while ensuring fast sample generation. However, they are difficult to train and are prone to several issues including mode collapse and divergence. In this paper, we introduce SpecDiff-GAN, a neural vocoder based on HiFi-GAN, which was initially devised for speech synthesis from mel spectrogram. In our model, the training stability is enhanced by means of a forward diffusion process which consists in injecting noise from a Gaussian distribution to both real and fake samples before inputting them to the discriminator. We further improve the model by exploiting a spectrally-shaped noise distribution with the aim to make the discriminator's task more challenging. We then show the merits of our proposed model for speech and music synthesis on several datasets. Our experiments confirm that our model compares favorably in audio quality and efficiency compared to several baselines.
Abstract:Neuro-steered speaker extraction aims to extract the listener's brain-attended speech signal from a multi-talker speech signal, in which the attention is derived from the cortical activity. This activity is usually recorded using electroencephalography (EEG) devices. Though promising, current methods often have a high speaker confusion error, where the interfering speaker is extracted instead of the attended speaker, degrading the listening experience. In this work, we aim to reduce the speaker confusion error in the neuro-steered speaker extraction model through a jointly fine-tuned auxiliary auditory attention detection model. The latter reinforces the consistency between the extracted target speech signal and the EEG representation, and also improves the EEG representation. Experimental results show that the proposed network significantly outperforms the baseline in terms of speaker confusion and overall signal quality in two-talker scenarios.
Abstract:Target speech extraction aims to extract, based on a given conditioning cue, a target speech signal that is corrupted by interfering sources, such as noise or competing speakers. Building upon the achievements of the state-of-the-art (SOTA) time-frequency speaker separation model TF-GridNet, we propose AV-GridNet, a visual-grounded variant that incorporates the face recording of a target speaker as a conditioning factor during the extraction process. Recognizing the inherent dissimilarities between speech and noise signals as interfering sources, we also propose SAV-GridNet, a scenario-aware model that identifies the type of interfering scenario first and then applies a dedicated expert model trained specifically for that scenario. Our proposed model achieves SOTA results on the second COG-MHEAR Audio-Visual Speech Enhancement Challenge, outperforming other models by a significant margin, objectively and in a listening test. We also perform an extensive analysis of the results under the two scenarios.
Abstract:The introduction of audio latent diffusion models possessing the ability to generate realistic sound clips on demand from a text description has the potential to revolutionize how we work with audio. In this work, we make an initial attempt at understanding the inner workings of audio latent diffusion models by investigating how their audio outputs compare with the training data, similar to how a doctor auscultates a patient by listening to the sounds of their organs. Using text-to-audio latent diffusion models trained on the AudioCaps dataset, we systematically analyze memorization behavior as a function of training set size. We also evaluate different retrieval metrics for evidence of training data memorization, finding the similarity between mel spectrograms to be more robust in detecting matches than learned embedding vectors. In the process of analyzing memorization in audio latent diffusion models, we also discover a large amount of duplicated audio clips within the AudioCaps database.
Abstract:Automated audio captioning (AAC) aims to generate informative descriptions for various sounds from nature and/or human activities. In recent years, AAC has quickly attracted research interest, with state-of-the-art systems now relying on a sequence-to-sequence (seq2seq) backbone powered by strong models such as Transformers. Following the macro-trend of applied machine learning research, in this work, we strive to improve the performance of seq2seq AAC models by extensively leveraging pretrained models and large language models (LLMs). Specifically, we utilize BEATs to extract fine-grained audio features. Then, we employ Instructor LLM to fetch text embeddings of captions, and infuse their language-modality knowledge into BEATs audio features via an auxiliary InfoNCE loss function. Moreover, we propose a novel data augmentation method that uses ChatGPT to produce caption mix-ups (i.e., grammatical and compact combinations of two captions) which, together with the corresponding audio mixtures, increase not only the amount but also the complexity and diversity of training data. During inference, we propose to employ nucleus sampling and a hybrid reranking algorithm, which has not been explored in AAC research. Combining our efforts, our model achieves a new state-of-the-art 32.6 SPIDEr-FL score on the Clotho evaluation split, and wins the 2023 DCASE AAC challenge.
Abstract:This paper summarizes the cinematic demixing (CDX) track of the Sound Demixing Challenge 2023 (SDX'23). We provide a comprehensive summary of the challenge setup, detailing the structure of the competition and the datasets used. Especially, we detail CDXDB23, a new hidden dataset constructed from real movies that was used to rank the submissions. The paper also offers insights into the most successful approaches employed by participants. Compared to the cocktail-fork baseline, the best-performing system trained exclusively on the simulated Divide and Remaster (DnR) dataset achieved an improvement of 1.8dB in SDR whereas the top performing system on the open leaderboard, where any data could be used for training, saw a significant improvement of 5.7dB.
Abstract:To realize human-robot collaboration, robots need to execute actions for new tasks according to human instructions given finite prior knowledge. Human experts can share their knowledge of how to perform a task with a robot through multi-modal instructions in their demonstrations, showing a sequence of short-horizon steps to achieve a long-horizon goal. This paper introduces a method for robot action sequence generation from instruction videos using (1) an audio-visual Transformer that converts audio-visual features and instruction speech to a sequence of robot actions called dynamic movement primitives (DMPs) and (2) style-transfer-based training that employs multi-task learning with video captioning and weakly-supervised learning with a semantic classifier to exploit unpaired video-action data. We built a system that accomplishes various cooking actions, where an arm robot executes a DMP sequence acquired from a cooking video using the audio-visual Transformer. Experiments with Epic-Kitchen-100, YouCookII, QuerYD, and in-house instruction video datasets show that the proposed method improves the quality of DMP sequences by 2.3 times the METEOR score obtained with a baseline video-to-action Transformer. The model achieved 32% of the task success rate with the task knowledge of the object.
Abstract:In spite of the progress in music source separation research, the small amount of publicly-available clean source data remains a constant limiting factor for performance. Thus, recent advances in self-supervised learning present a largely-unexplored opportunity for improving separation models by leveraging unlabelled music data. In this paper, we propose a self-supervised learning framework for music source separation inspired by the HuBERT speech representation model. We first investigate the potential impact of the original HuBERT model by inserting an adapted version of it into the well-known Demucs V2 time-domain separation model architecture. We then propose a time-frequency-domain self-supervised model, Pac-HuBERT (for primitive auditory clustering HuBERT), that we later use in combination with a Res-U-Net decoder for source separation. Pac-HuBERT uses primitive auditory features of music as unsupervised clustering labels to initialize the self-supervised pretraining process using the Free Music Archive (FMA) dataset. The resulting framework achieves better source-to-distortion ratio (SDR) performance on the MusDB18 test set than the original Demucs V2 and Res-U-Net models. We further demonstrate that it can boost performance with small amounts of supervised data. Ultimately, our proposed framework is an effective solution to the challenge of limited clean source data for music source separation.