Abstract:Despite advancements in grounded content generation, production Large Language Models (LLMs) based applications still suffer from hallucinated answers. We present "Grounded in Context" - Deepchecks' hallucination detection framework, designed for production-scale long-context data and tailored to diverse use cases, including summarization, data extraction, and RAG. Inspired by RAG architecture, our method integrates retrieval and Natural Language Inference (NLI) models to predict factual consistency between premises and hypotheses using an encoder-based model with only a 512-token context window. Our framework identifies unsupported claims with an F1 score of 0.83 in RAGTruth's response-level classification task, matching methods that trained on the dataset, and outperforming all comparable frameworks using similar-sized models.
Abstract:This paper presents Deepchecks, a Python library for comprehensively validating machine learning models and data. Our goal is to provide an easy-to-use library comprising of many checks related to various types of issues, such as model predictive performance, data integrity, data distribution mismatches, and more. The package is distributed under the GNU Affero General Public License (AGPL) and relies on core libraries from the scientific Python ecosystem: scikit-learn, PyTorch, NumPy, pandas, and SciPy. Source code, documentation, examples, and an extensive user guide can be found at \url{https://github.com/deepchecks/deepchecks} and \url{https://docs.deepchecks.com/}.