"Santu"
Abstract:LLMs show promise in code generation, yet their effectiveness for IT automation tasks, particularly for tools like Ansible, remains understudied. Existing benchmarks rely primarily on synthetic tasks that fail to capture the needs of practitioners who use IT automation tools, such as Ansible. We present ITAB (IT Automation Task Benchmark), a benchmark of 126 diverse tasks (e.g., configuring servers, managing files) where each task accounts for state reconciliation: a property unique to IT automation tools. ITAB evaluates LLMs' ability to generate functional Ansible automation scripts via dynamic execution in controlled environments. We evaluate 14 open-source LLMs, none of which accomplish pass@10 at a rate beyond 12%. To explain these low scores, we analyze 1,411 execution failures across the evaluated LLMs and identify two main categories of prevalent semantic errors: failures in state reconciliation related reasoning (44.87% combined from variable (11.43%), host (11.84%), path(11.63%), and template (9.97%) issues) and deficiencies in module-specific execution knowledge (24.37% combined from Attribute and parameter (14.44%) and module (9.93%) errors). Our findings reveal key limitations in open-source LLMs' ability to track state changes and apply specialized module knowledge, indicating that reliable IT automation will require major advances in state reasoning and domain-specific execution understanding.
Abstract:Semantic Overlap Summarization (SOS) is a constrained multi-document summarization task, where the constraint is to capture the common/overlapping information between two alternative narratives. While recent advancements in Large Language Models (LLMs) have achieved superior performance in numerous summarization tasks, a benchmarking study of the SOS task using LLMs is yet to be performed. As LLMs' responses are sensitive to slight variations in prompt design, a major challenge in conducting such a benchmarking study is to systematically explore a variety of prompts before drawing a reliable conclusion. Fortunately, very recently, the TELeR taxonomy has been proposed which can be used to design and explore various prompts for LLMs. Using this TELeR taxonomy and 15 popular LLMs, this paper comprehensively evaluates LLMs on the SOS Task, assessing their ability to summarize overlapping information from multiple alternative narratives. For evaluation, we report well-established metrics like ROUGE, BERTscore, and SEM-F1$ on two different datasets of alternative narratives. We conclude the paper by analyzing the strengths and limitations of various LLMs in terms of their capabilities in capturing overlapping information The code and datasets used to conduct this study are available at https://anonymous.4open.science/r/llm_eval-E16D.
Abstract:One of the most important yet onerous tasks in the academic peer-reviewing process is composing meta-reviews, which involves understanding the core contributions, strengths, and weaknesses of a scholarly manuscript based on peer-review narratives from multiple experts and then summarizing those multiple experts' perspectives into a concise holistic overview. Given the latest major developments in generative AI, especially Large Language Models (LLMs), it is very compelling to rigorously study the utility of LLMs in generating such meta-reviews in an academic peer-review setting. In this paper, we perform a case study with three popular LLMs, i.e., GPT-3.5, LLaMA2, and PaLM2, to automatically generate meta-reviews by prompting them with different types/levels of prompts based on the recently proposed TELeR taxonomy. Finally, we perform a detailed qualitative study of the meta-reviews generated by the LLMs and summarize our findings and recommendations for prompting LLMs for this complex task.