Abstract:Purpose: To develop and evaluate a wearable wireless resonator glasses design that enhances eye MRI signal-to-noise ratio (SNR) without compromising whole-brain image quality at 7 T. Methods: The device integrates two detunable LC loop resonators into a lightweight, 3D-printed frame positioned near the eyes. The resonators passively couple to a standard 2Tx/32Rx head coil without hardware modifications. Bench tests assessed tuning, isolation, and detuning performance. B1$^+$ maps were measured in a head/shoulder phantom, and SNR maps were obtained in both phantom and in vivo experiments. Results: Bench measurements confirmed accurate tuning, strong inter-element isolation, and effective passive detuning. Phantom B1$^+$ mapping showed negligible differences between configurations with and without the resonators. Phantom and in vivo imaging demonstrated up to about a 3-fold SNR gain in the eye region, with no measurable SNR loss in the brain. Conclusion: The wireless resonator glasses provide a low-cost, easy-to-use solution that improves ocular SNR while preserving whole-brain image quality, enabling both dedicated eye MRI and simultaneous eye-brain imaging at ultrahigh field.
Abstract:Summary: Errors in gradient trajectories introduce significant artifacts and distortions in magnetic resonance images, particularly in non-Cartesian imaging sequences, where imperfect gradient waveforms can greatly reduce image quality. Purpose: Our objective is to develop a general, nonlinear gradient system model that can accurately predict gradient distortions using convolutional networks. Methods: A set of training gradient waveforms were measured on a small animal imaging system, and used to train a temporal convolutional network to predict the gradient waveforms produced by the imaging system. Results: The trained network was able to accurately predict nonlinear distortions produced by the gradient system. Network prediction of gradient waveforms was incorporated into the image reconstruction pipeline and provided improvements in image quality and diffusion parameter mapping compared to both the nominal gradient waveform and the gradient impulse response function. Conclusion: Temporal convolutional networks can more accurately model gradient system behavior than existing linear methods and may be used to retrospectively correct gradient errors.