Abstract:Data in the healthcare domain arise from a variety of sources and modalities, such as x-ray images, continuous measurements, and clinical notes. Medical practitioners integrate these diverse data types daily to make informed and accurate decisions. With recent advancements in language models capable of handling multimodal data, it is a logical progression to apply these models to the healthcare sector. In this work, we introduce a framework that connects small language models to multiple data sources, aiming to predict the risk of various diseases simultaneously. Our experiments encompass 12 different tasks within a multitask learning setup. Although our approach does not surpass state-of-the-art methods specialized for single tasks, it demonstrates competitive performance and underscores the potential of small language models for multimodal reasoning in healthcare.
Abstract:Federated Learning (FL) is a decentralized learning paradigm, enabling parties to collaboratively train models while keeping their data confidential. Within autonomous driving, it brings the potential of reducing data storage costs, reducing bandwidth requirements, and to accelerate the learning. FL is, however, susceptible to poisoning attacks. In this paper, we introduce two novel poisoning attacks on FL tailored to regression tasks within autonomous driving: FLStealth and Off-Track Attack (OTA). FLStealth, an untargeted attack, aims at providing model updates that deteriorate the global model performance while appearing benign. OTA, on the other hand, is a targeted attack with the objective to change the global model's behavior when exposed to a certain trigger. We demonstrate the effectiveness of our attacks by conducting comprehensive experiments pertaining to the task of vehicle trajectory prediction. In particular, we show that, among five different untargeted attacks, FLStealth is the most successful at bypassing the considered defenses employed by the server. For OTA, we demonstrate the inability of common defense strategies to mitigate the attack, highlighting the critical need for new defensive mechanisms against targeted attacks within FL for autonomous driving.
Abstract:Secure aggregation (SecAgg) is a commonly-used privacy-enhancing mechanism in federated learning, affording the server access only to the aggregate of model updates while safeguarding the confidentiality of individual updates. Despite widespread claims regarding SecAgg's privacy-preserving capabilities, a formal analysis of its privacy is lacking, making such presumptions unjustified. In this paper, we delve into the privacy implications of SecAgg by treating it as a local differential privacy (LDP) mechanism for each local update. We design a simple attack wherein an adversarial server seeks to discern which update vector a client submitted, out of two possible ones, in a single training round of federated learning under SecAgg. By conducting privacy auditing, we assess the success probability of this attack and quantify the LDP guarantees provided by SecAgg. Our numerical results unveil that, contrary to prevailing claims, SecAgg offers weak privacy against membership inference attacks even in a single training round. Indeed, it is difficult to hide a local update by adding other independent local updates when the updates are of high dimension. Our findings underscore the imperative for additional privacy-enhancing mechanisms, such as noise injection, in federated learning.
Abstract:We address the challenge of federated learning on graph-structured data distributed across multiple clients. Specifically, we focus on the prevalent scenario of interconnected subgraphs, where inter-connections between different clients play a critical role. We present a novel framework for this scenario, named FedStruct, that harnesses deep structural dependencies. To uphold privacy, unlike existing methods, FedStruct eliminates the necessity of sharing or generating sensitive node features or embeddings among clients. Instead, it leverages explicit global graph structure information to capture inter-node dependencies. We validate the effectiveness of FedStruct through experimental results conducted on six datasets for semi-supervised node classification, showcasing performance close to the centralized approach across various scenarios, including different data partitioning methods, varying levels of label availability, and number of clients.
Abstract:We propose FedGT, a novel framework for identifying malicious clients in federated learning with secure aggregation. Inspired by group testing, the framework leverages overlapping groups of clients to detect the presence of malicious clients in the groups and to identify them via a decoding operation. The identified clients are then removed from the training of the model, which is performed over the remaining clients. FedGT strikes a balance between privacy and security, allowing for improved identification capabilities while still preserving data privacy. Specifically, the server learns the aggregated model of the clients in each group. The effectiveness of FedGT is demonstrated through extensive experiments on the MNIST and CIFAR-10 datasets, showing its ability to identify malicious clients with low misdetection and false alarm probabilities, resulting in high model utility.
Abstract:Onboard machine learning on the latest satellite hardware offers the potential for significant savings in communication and operational costs. We showcase the training of a machine learning model on a satellite constellation for scene classification using semi-supervised learning while accounting for operational constraints such as temperature and limited power budgets based on satellite processor benchmarks of the neural network. We evaluate mission scenarios employing both decentralised and federated learning approaches. All scenarios achieve convergence to high accuracy (around 91% on EuroSAT RGB dataset) within a one-day mission timeframe.
Abstract:In this paper, we propose a novel approach for privacy-preserving node selection in personalized decentralized learning, which we refer to as Private Personalized Decentralized Learning (PPDL). Our method mitigates the risk of inference attacks through the use of secure aggregation while simultaneously enabling efficient identification of collaborators. This is achieved by leveraging adversarial multi-armed bandit optimization that exploits dependencies between the different arms. Through comprehensive experimentation on various benchmarks under label and covariate shift, we demonstrate that our privacy-preserving approach outperforms previous non-private methods in terms of model performance.
Abstract:We consider a decentralized multiplayer game, played over $T$ rounds, with a leader-follower hierarchy described by a directed acyclic graph. For each round, the graph structure dictates the order of the players and how players observe the actions of one another. By the end of each round, all players receive a joint bandit-reward based on their joint action that is used to update the player strategies towards the goal of minimizing the joint pseudo-regret. We present a learning algorithm inspired by the single-player multi-armed bandit problem and show that it achieves sub-linear joint pseudo-regret in the number of rounds for both adversarial and stochastic bandit rewards. Furthermore, we quantify the cost incurred due to the decentralized nature of our problem compared to the centralized setting.