Abstract:Fact-checking remains a demanding and time-consuming task, still largely dependent on manual verification and unable to match the rapid spread of misinformation online. This is particularly important because debunking false information typically takes longer to reach consumers than the misinformation itself; accelerating corrections through automation can therefore help counter it more effectively. Although many organizations perform manual fact-checking, this approach is difficult to scale given the growing volume of digital content. These limitations have motivated interest in automating fact-checking, where identifying claims is a crucial first step. However, progress has been uneven across languages, with English dominating due to abundant annotated data. Portuguese, like other languages, still lacks accessible, licensed datasets, limiting research, NLP developments and applications. In this paper, we introduce ClaimPT, a dataset of European Portuguese news articles annotated for factual claims, comprising 1,308 articles and 6,875 individual annotations. Unlike most existing resources based on social media or parliamentary transcripts, ClaimPT focuses on journalistic content, collected through a partnership with LUSA, the Portuguese News Agency. To ensure annotation quality, two trained annotators labeled each article, with a curator validating all annotations according to a newly proposed scheme. We also provide baseline models for claim detection, establishing initial benchmarks and enabling future NLP and IR applications. By releasing ClaimPT, we aim to advance research on low-resource fact-checking and enhance understanding of misinformation in news media.
Abstract:City council minutes are typically lengthy and formal documents with a bureaucratic writing style. Although publicly available, their structure often makes it difficult for citizens or journalists to efficiently find information. In this demo, we present CitiLink, a platform designed to transform unstructured municipal meeting minutes into structured and searchable data, demonstrating how NLP and IR can enhance the accessibility and transparency of local government. The system employs LLMs to extract metadata, discussed subjects, and voting outcomes, which are then indexed in a database to support full-text search with BM25 ranking and faceted filtering through a user-friendly interface. The developed system was built over a collection of 120 minutes made available by six Portuguese municipalities. To assess its usability, CitiLink was tested through guided sessions with municipal personnel, providing insights into how real users interact with the system. In addition, we evaluated Gemini's performance in extracting relevant information from the minutes, highlighting its effectiveness in data extraction.