Abstract:This study presents an Exploratory Retrieval-Augmented Planning (ExRAP) framework, designed to tackle continual instruction following tasks of embodied agents in dynamic, non-stationary environments. The framework enhances Large Language Models' (LLMs) embodied reasoning capabilities by efficiently exploring the physical environment and establishing the environmental context memory, thereby effectively grounding the task planning process in time-varying environment contexts. In ExRAP, given multiple continual instruction following tasks, each instruction is decomposed into queries on the environmental context memory and task executions conditioned on the query results. To efficiently handle these multiple tasks that are performed continuously and simultaneously, we implement an exploration-integrated task planning scheme by incorporating the {information-based exploration} into the LLM-based planning process. Combined with memory-augmented query evaluation, this integrated scheme not only allows for a better balance between the validity of the environmental context memory and the load of environment exploration, but also improves overall task performance. Furthermore, we devise a {temporal consistency refinement} scheme for query evaluation to address the inherent decay of knowledge in the memory. Through experiments with VirtualHome, ALFRED, and CARLA, our approach demonstrates robustness against a variety of embodied instruction following scenarios involving different instruction scales and types, and non-stationarity degrees, and it consistently outperforms other state-of-the-art LLM-based task planning approaches in terms of both goal success rate and execution efficiency.
Abstract:In embodied AI, a persistent challenge is enabling agents to robustly adapt to novel domains without requiring extensive data collection or retraining. To address this, we present a world model implanting framework (WorMI) that combines the reasoning capabilities of large language models (LLMs) with independently learned, domain-specific world models through test-time composition. By allowing seamless implantation and removal of the world models, the embodied agent's policy achieves and maintains cross-domain adaptability. In the WorMI framework, we employ a prototype-based world model retrieval approach, utilizing efficient trajectory-based abstract representation matching, to incorporate relevant models into test-time composition. We also develop a world-wise compound attention method that not only integrates the knowledge from the retrieved world models but also aligns their intermediate representations with the reasoning model's representation within the agent's policy. This framework design effectively fuses domain-specific knowledge from multiple world models, ensuring robust adaptation to unseen domains. We evaluate our WorMI on the VirtualHome and ALFWorld benchmarks, demonstrating superior zero-shot and few-shot performance compared to several LLM-based approaches across a range of unseen domains. These results highlight the frameworks potential for scalable, real-world deployment in embodied agent scenarios where adaptability and data efficiency are essential.
Abstract:When applying Visual Place Recognition (VPR) to real-world mobile robots and similar applications, perspective-to-equirectangular (P2E) formulation naturally emerges as a suitable approach to accommodate diverse query images captured from various viewpoints. In this paper, we introduce HypeVPR, a novel hierarchical embedding framework in hyperbolic space, designed to address the unique challenges of P2E VPR. The key idea behind HypeVPR is that visual environments captured by panoramic views exhibit inherent hierarchical structures. To leverage this property, we employ hyperbolic space to represent hierarchical feature relationships and preserve distance properties within the feature space. To achieve this, we propose a hierarchical feature aggregation mechanism that organizes local-to-global feature representations within hyperbolic space. Additionally, HypeVPR adopts an efficient coarse-to-fine search strategy, optimally balancing speed and accuracy to ensure robust matching, even between descriptors from different image types. This approach enables HypeVPR to outperform state-of-the-art methods while significantly reducing retrieval time, achieving up to 5x faster retrieval across diverse benchmark datasets. The code and models will be released at https://github.com/suhan-woo/HypeVPR.git.
Abstract:Given a road network and a set of trajectory data, the anomalous behavior detection (ABD) problem is to identify drivers that show significant directional deviations, hardbrakings, and accelerations in their trips. The ABD problem is important in many societal applications, including Mild Cognitive Impairment (MCI) detection and safe route recommendations for older drivers. The ABD problem is computationally challenging due to the large size of temporally-detailed trajectories dataset. In this paper, we propose an Edge-Attributed Matrix that can represent the key properties of temporally-detailed trajectory datasets and identify abnormal driving behaviors. Experiments using real-world datasets demonstrated that our approach identifies abnormal driving behaviors.
Abstract:Driving is a complex daily activity indicating age and disease related cognitive declines. Therefore, deficits in driving performance compared with ones without mild cognitive impairment (MCI) can reflect changes in cognitive functioning. There is increasing evidence that unobtrusive monitoring of older adults driving performance in a daily-life setting may allow us to detect subtle early changes in cognition. The objectives of this paper include designing low-cost in-vehicle sensing hardware capable of obtaining high-precision positioning and telematics data, identifying important indicators for early changes in cognition, and detecting early-warning signs of cognitive impairment in a truly normal, day-to-day driving condition with machine learning approaches. Our statistical analysis comparing drivers with MCI to those without reveals that those with MCI exhibit smoother and safer driving patterns. This suggests that drivers with MCI are cognizant of their condition and tend to avoid erratic driving behaviors. Furthermore, our Random Forest models identified the number of night trips, number of trips, and education as the most influential factors in our data evaluation.
Abstract:In-vehicle sensing technology has gained tremendous attention due to its ability to support major technological developments, such as connected vehicles and self-driving cars. In-vehicle sensing data are invaluable and important data sources for traffic management systems. In this paper we propose an innovative architecture of unobtrusive in-vehicle sensors and present methods and tools that are used to measure the behavior of drivers. The proposed architecture including methods and tools are used in our NIH project to monitor and identify older drivers with early dementia