Abstract:Reinforcement learning has become a cornerstone for enhancing the reasoning capabilities of Large Language Models, where group-based approaches such as GRPO have emerged as efficient paradigms that optimize policies by leveraging intra-group performance differences. However, these methods typically rely on absolute numerical rewards, introducing intrinsic limitations. In verifiable tasks, identical group evaluations often result in sparse supervision, while in open-ended scenarios, the score range instability of reward models undermines advantage estimation based on group means. To address these limitations, we propose Reinforcement Learning with Relative Rewards (RLRR), a framework that shifts reward shaping from absolute scoring to relative ranking. Complementing this framework, we introduce the Ranking Reward Model, a listwise preference model tailored for group-based optimization to directly generate relative rankings. By transforming raw evaluations into robust relative signals, RLRR effectively mitigates signal sparsity and reward instability. Experimental results demonstrate that RLRR yields consistent performance improvements over standard group-based baselines across reasoning benchmarks and open-ended generation tasks.
Abstract:Large language models (LLMs) have demonstrated remarkable capabilities in function calling for autonomous agents, yet current mechanisms lack explicit reasoning transparency during parameter generation, particularly for complex functions with interdependent parameters. While existing approaches like chain-of-thought prompting operate at the agent level, they fail to provide fine-grained reasoning guidance for individual function parameters. To address these limitations, we propose Think-Augmented Function Calling (TAFC), a novel framework that enhances function calling accuracy through explicit reasoning at both function and parameter levels. Our method introduces a universal "think" parameter augmentation that enables models to articulate their decision-making process, with dynamic optimization for parameter descriptions to improve reasoning quality. For complex parameters, TAFC automatically triggers granular reasoning based on complexity scoring, ensuring appropriate justification for critical decisions. Additionally, we propose reasoning-guided optimization to align generated reasoning with human expectations. TAFC requires no architectural modifications to existing LLMs while maintaining full API compatibility. Evaluation on ToolBench across proprietary and open-source models demonstrates significant improvements in parameter generation accuracy and reasoning coherence for multi-parameter functions, while providing enhanced interpretability for debugging AI agent behaviors.