Abstract:While Vision-Language Models (VLMs) can solve complex tasks through agentic reasoning, their capabilities remain largely constrained to text-oriented chain-of-thought or isolated tool invocation. They fail to exhibit the human-like proficiency required to seamlessly interleave dynamic tool manipulation with continuous reasoning, particularly in knowledge-intensive and visually complex scenarios that demand coordinated external tools such as search and image cropping. In this work, we introduce SenseNova-MARS, a novel Multimodal Agentic Reasoning and Search framework that empowers VLMs with interleaved visual reasoning and tool-use capabilities via reinforcement learning (RL). Specifically, SenseNova-MARS dynamically integrates the image search, text search, and image crop tools to tackle fine-grained and knowledge-intensive visual understanding challenges. In the RL stage, we propose the Batch-Normalized Group Sequence Policy Optimization (BN-GSPO) algorithm to improve the training stability and advance the model's ability to invoke tools and reason effectively. To comprehensively evaluate the agentic VLMs on complex visual tasks, we introduce the HR-MMSearch benchmark, the first search-oriented benchmark composed of high-resolution images with knowledge-intensive and search-driven questions. Experiments demonstrate that SenseNova-MARS achieves state-of-the-art performance on open-source search and fine-grained image understanding benchmarks. Specifically, on search-oriented benchmarks, SenseNova-MARS-8B scores 67.84 on MMSearch and 41.64 on HR-MMSearch, surpassing proprietary models such as Gemini-3-Flash and GPT-5. SenseNova-MARS represents a promising step toward agentic VLMs by providing effective and robust tool-use capabilities. To facilitate further research in this field, we will release all code, models, and datasets.
Abstract:Although Deep Neural Networks (DNNs) have been widely applied in various real-world scenarios, they are vulnerable to adversarial examples. The current adversarial attacks in computer vision can be divided into digital attacks and physical attacks according to their different attack forms. Compared with digital attacks, which generate perturbations in the digital pixels, physical attacks are more practical in the real world. Owing to the serious security problem caused by physically adversarial examples, many works have been proposed to evaluate the physically adversarial robustness of DNNs in the past years. In this paper, we summarize a survey versus the current physically adversarial attacks and physically adversarial defenses in computer vision. To establish a taxonomy, we organize the current physical attacks from attack tasks, attack forms, and attack methods, respectively. Thus, readers can have a systematic knowledge about this topic from different aspects. For the physical defenses, we establish the taxonomy from pre-processing, in-processing, and post-processing for the DNN models to achieve a full coverage of the adversarial defenses. Based on the above survey, we finally discuss the challenges of this research field and further outlook the future direction.