Abstract:Ground Penetrating Radar (GPR) has emerged as a pivotal tool for non-destructive evaluation of subsurface road defects. However, conventional GPR image interpretation remains heavily reliant on subjective expertise, introducing inefficiencies and inaccuracies. This study introduces a comprehensive framework to address these limitations: (1) A DCGAN-based data augmentation strategy synthesizes high-fidelity GPR images to mitigate data scarcity while preserving defect morphology under complex backgrounds; (2) A novel Multi-modal Chain and Global Attention Network (MCGA-Net) is proposed, integrating Multi-modal Chain Feature Fusion (MCFF) for hierarchical multi-scale defect representation and Global Attention Mechanism (GAM) for context-aware feature enhancement; (3) MS COCO transfer learning fine-tunes the backbone network, accelerating convergence and improving generalization. Ablation and comparison experiments validate the framework's efficacy. MCGA-Net achieves Precision (92.8%), Recall (92.5%), and mAP@50 (95.9%). In the detection of Gaussian noise, weak signals and small targets, MCGA-Net maintains robustness and outperforms other models. This work establishes a new paradigm for automated GPR-based defect detection, balancing computational efficiency with high accuracy in complex subsurface environments.
Abstract:Infusing deep learning with structural engineering has received widespread attention for both forward problems (structural simulation) and inverse problems (structural health monitoring). Based on Fourier Neural Operator, this study proposes VINO (Vehicle-bridge Interaction Neural Operator) to serve as the digital twin of bridge structures. VINO learns mappings between structural response fields and damage fields. In this study, VBI-FE dataset was established by running parametric finite element (FE) simulations considering a random distribution of structural initial damage field. Subsequently, VBI-EXP dataset was produced by conducting an experimental study under four damage scenarios. After VINO was pre-trained by VBI-FE and fine-tuned by VBI-EXP from the bridge at the healthy state, the model achieved the following two improvements. First, forward VINO can predict structural responses from damage field inputs more accurately than the FE model. Second, inverse VINO can determine, localize, and quantify damages in all scenarios, suggesting the practicality of data-driven approaches.