Abstract:Advanced sound zone control (SZC) techniques typically rely on massive multi-channel loudspeaker arrays to create high-contrast personal sound zones, making single-loudspeaker SZC seem impossible. In this Letter, we challenge this paradigm by introducing the multi-carrier parametric loudspeaker (MCPL), which enables SZC using only a single loudspeaker. In our approach, distinct audio signals are modulated onto separate ultrasonic carrier waves at different frequencies and combined into a single composite signal. This signal is emitted by a single-channel ultrasonic transducer, and through nonlinear demodulation in air, the audio signals interact to virtually form multi-channel outputs. This novel capability allows the application of existing SZC algorithms originally designed for multi-channel loudspeaker arrays. Simulations validate the effectiveness of our proposed single-channel MCPL, demonstrating its potential as a promising alternative to traditional multi-loudspeaker systems for achieving high-contrast SZC. Our work opens new avenues for simplifying SZC systems without compromising performance.
Abstract:Compared to traditional electrodynamic loudspeakers, the parametric array loudspeaker (PAL) offers exceptional directivity for audio applications but suffers from significant nonlinear distortions due to its inherent intricate demodulation process. The Volterra filter-based approaches have been widely used to reduce these distortions, but the effectiveness is limited by its inverse filter's capability. Specifically, its pth-order inverse filter can only compensate for nonlinearities up to the pth order, while the higher-order nonlinearities it introduces continue to generate lower-order harmonics. In contrast, this paper introduces the modern deep learning methods for the first time to address nonlinear identification and compensation for PAL systems. Specifically, a feedforward variant of the WaveNet neural network, recognized for its success in audio nonlinear system modeling, is utilized to identify and compensate for distortions in a double sideband amplitude modulation-based PAL system. Experimental measurements from 250 Hz to 8 kHz demonstrate that our proposed approach significantly reduces both total harmonic distortion and intermodulation distortion of audio sound generated by PALs, achieving average reductions to 4.55% and 2.47%, respectively. This performance is notably superior to results obtained using the current state-of-the-art Volterra filter-based methods. Our work opens new possibilities for improving the sound reproduction performance of PALs.
Abstract:Parametric array loudspeakers (PALs) are known for producing highly directional audio beams, a feat more challenging to achieve with conventional electro-dynamic loudspeakers (EDLs). Due to their intrinsic physical mechanisms, PALs hold promising potential for spatial audio applications such as virtual reality (VR). However, the feasibility of using an array of PALs for sound zone control (SZC) has remained unexplored, mainly due to the complexity of the nonlinear demodulation process inherent in PALs. Leveraging recent advancements in PAL modeling, this work proposes an optimization algorithm to achieve the acoustic contrast control (ACC) between two target areas using a PAL array. The performance and robustness of the proposed ACC-based SZC using PAL arrays are investigated through simulations, and the results are compared with those obtained using EDL arrays. The results show that the PAL array outperforms the EDL array in SZC performance and robustness at higher frequencies and lower signal-to-noise ratio, while being comparable under other conditions. This work paves the way for high-contrast acoustic control using PAL arrays.