Abstract:Various weather modelling problems (e.g., weather forecasting, optimizing turbine placements, etc.) require ample access to high-resolution, highly accurate wind data. Acquiring such high-resolution wind data, however, remains a challenging and expensive endeavour. Traditional reconstruction approaches are typically either cost-effective or accurate, but not both. Deep learning methods, including diffusion models, have been proposed to resolve this trade-off by leveraging advances in natural image super-resolution. Wind data, however, is distinct from natural images, and wind super-resolvers often use upwards of 10 input channels, significantly more than the usual 3-channel RGB inputs in natural images. To better leverage a large number of conditioning variables in diffusion models, we present a generalization of classifier-free guidance (CFG) to multiple conditioning inputs. Our novel composite classifier-free guidance (CCFG) can be dropped into any pre-trained diffusion model trained with standard CFG dropout. We demonstrate that CCFG outputs are higher-fidelity than those from CFG on wind super-resolution tasks. We present WindDM, a diffusion model trained for industrial-scale wind dynamics reconstruction and leveraging CCFG. WindDM achieves state-of-the-art reconstruction quality among deep learning models and costs up to $1000\times$ less than classical methods.
Abstract:Recent advances in generative models, such as diffusion models, have made generating high-quality synthetic images widely accessible. Prior works have shown that training on synthetic images improves many perception tasks, such as image classification, object detection, and semantic segmentation. We are the first to explore generative data augmentations for scribble-supervised semantic segmentation. We propose a generative data augmentation method that leverages a ControlNet diffusion model conditioned on semantic scribbles to produce high-quality training data. However, naive implementations of generative data augmentations may inadvertently harm the performance of the downstream segmentor rather than improve it. We leverage classifier-free diffusion guidance to enforce class consistency and introduce encode ratios to trade off data diversity for data realism. Using the guidance scale and encode ratio, we are able to generate a spectrum of high-quality training images. We propose multiple augmentation schemes and find that these schemes significantly impact model performance, especially in the low-data regime. Our framework further reduces the gap between the performance of scribble-supervised segmentation and that of fully-supervised segmentation. We also show that our framework significantly improves segmentation performance on small datasets, even surpassing fully-supervised segmentation.