Abstract:Geomagnetic storms are large-scale disturbances of the Earth's magnetosphere driven by solar wind interactions, posing significant risks to space-based and ground-based infrastructure. The Disturbance Storm Time (Dst) index quantifies geomagnetic storm intensity by measuring global magnetic field variations. This study applies symbolic regression to derive data-driven equations describing the temporal evolution of the Dst index. We use historical data from the NASA OMNIweb database, including solar wind density, bulk velocity, convective electric field, dynamic pressure, and magnetic pressure. The PySR framework, an evolutionary algorithm-based symbolic regression library, is used to identify mathematical expressions linking dDst/dt to key solar wind. The resulting models include a hierarchy of complexity levels and enable a comparison with well-established empirical models such as the Burton-McPherron-Russell and O'Brien-McPherron models. The best-performing symbolic regression models demonstrate superior accuracy in most cases, particularly during moderate geomagnetic storms, while maintaining physical interpretability. Performance evaluation on historical storm events includes the 2003 Halloween Storm, the 2015 St. Patrick's Day Storm, and a 2017 moderate storm. The results provide interpretable, closed-form expressions that capture nonlinear dependencies and thresholding effects in Dst evolution.
Abstract:Numerical simulations of plasma flows are crucial for advancing our understanding of microscopic processes that drive the global plasma dynamics in fusion devices, space, and astrophysical systems. Identifying and classifying particle trajectories allows us to determine specific on-going acceleration mechanisms, shedding light on essential plasma processes. Our overall goal is to provide a general workflow for exploring particle trajectory space and automatically classifying particle trajectories from plasma simulations in an unsupervised manner. We combine pre-processing techniques, such as Fast Fourier Transform (FFT), with Machine Learning methods, such as Principal Component Analysis (PCA), k-means clustering algorithms, and silhouette analysis. We demonstrate our workflow by classifying electron trajectories during magnetic reconnection problem. Our method successfully recovers existing results from previous literature without a priori knowledge of the underlying system. Our workflow can be applied to analyzing particle trajectories in different phenomena, from magnetic reconnection, shocks to magnetospheric flows. The workflow has no dependence on any physics model and can identify particle trajectories and acceleration mechanisms that were not detected before.