Abstract:The field of adversarial robustness has long established that adversarial examples can successfully transfer between image classifiers and that text jailbreaks can successfully transfer between language models (LMs). However, a pair of recent studies reported being unable to successfully transfer image jailbreaks between vision-language models (VLMs). To explain this striking difference, we propose a fundamental distinction regarding the transferability of attacks against machine learning models: attacks in the input data-space can transfer, whereas attacks in model representation space do not, at least not without geometric alignment of representations. We then provide theoretical and empirical evidence of this hypothesis in four different settings. First, we mathematically prove this distinction in a simple setting where two networks compute the same input-output map but via different representations. Second, we construct representation-space attacks against image classifiers that are as successful as well-known data-space attacks, but fail to transfer. Third, we construct representation-space attacks against LMs that successfully jailbreak the attacked models but again fail to transfer. Fourth, we construct data-space attacks against VLMs that successfully transfer to new VLMs, and we show that representation space attacks \emph{can} transfer when VLMs' latent geometries are sufficiently aligned in post-projector space. Our work reveals that adversarial transfer is not an inherent property of all attacks but contingent on their operational domain - the shared data-space versus models' unique representation spaces - a critical insight for building more robust models.




Abstract:The rise of multimodal large language models has introduced innovative human-machine interaction paradigms but also significant challenges in machine learning safety. Audio-Language Models (ALMs) are especially relevant due to the intuitive nature of spoken communication, yet little is known about their failure modes. This paper explores audio jailbreaks targeting ALMs, focusing on their ability to bypass alignment mechanisms. We construct adversarial perturbations that generalize across prompts, tasks, and even base audio samples, demonstrating the first universal jailbreaks in the audio modality, and show that these remain effective in simulated real-world conditions. Beyond demonstrating attack feasibility, we analyze how ALMs interpret these audio adversarial examples and reveal them to encode imperceptible first-person toxic speech - suggesting that the most effective perturbations for eliciting toxic outputs specifically embed linguistic features within the audio signal. These results have important implications for understanding the interactions between different modalities in multimodal models, and offer actionable insights for enhancing defenses against adversarial audio attacks.




Abstract:As machine learning models become increasingly complex, concerns about their robustness and trustworthiness have become more pressing. A critical vulnerability of these models is data poisoning attacks, where adversaries deliberately alter training data to degrade model performance. One particularly stealthy form of these attacks is subpopulation poisoning, which targets distinct subgroups within a dataset while leaving overall performance largely intact. The ability of these attacks to generalize within subpopulations poses a significant risk in real-world settings, as they can be exploited to harm marginalized or underrepresented groups within the dataset. In this work, we investigate how model complexity influences susceptibility to subpopulation poisoning attacks. We introduce a theoretical framework that explains how overparameterized models, due to their large capacity, can inadvertently memorize and misclassify targeted subpopulations. To validate our theory, we conduct extensive experiments on large-scale image and text datasets using popular model architectures. Our results show a clear trend: models with more parameters are significantly more vulnerable to subpopulation poisoning. Moreover, we find that attacks on smaller, human-interpretable subgroups often go undetected by these models. These results highlight the need to develop defenses that specifically address subpopulation vulnerabilities.