Abstract:Audio-Visual Segmentation (AVS) aims to localize sound-producing objects at the pixel level by jointly leveraging auditory and visual information. However, existing methods often suffer from multi-source entanglement and audio-visual misalignment, which lead to biases toward louder or larger objects while overlooking weaker, smaller, or co-occurring sources. To address these challenges, we propose DDAVS, a Disentangled Audio Semantics and Delayed Bidirectional Alignment framework. To mitigate multi-source entanglement, DDAVS employs learnable queries to extract audio semantics and anchor them within a structured semantic space derived from an audio prototype memory bank. This is further optimized through contrastive learning to enhance discriminability and robustness. To alleviate audio-visual misalignment, DDAVS introduces dual cross-attention with delayed modality interaction, improving the robustness of multimodal alignment. Extensive experiments on the AVS-Objects and VPO benchmarks demonstrate that DDAVS consistently outperforms existing approaches, exhibiting strong performance across single-source, multi-source, and multi-instance scenarios. These results validate the effectiveness and generalization ability of our framework under challenging real-world audio-visual segmentation conditions. Project page: https://trilarflagz.github.io/DDAVS-page/
Abstract:State-Space Models (SSMs) excel at capturing long-range dependencies with structured recurrence, making them well-suited for sequence modeling. However, their evolving internal states pose challenges in adapting them under Continual Learning (CL). This is particularly difficult in exemplar-free settings, where the absence of prior data leaves updates to the dynamic SSM states unconstrained, resulting in catastrophic forgetting. To address this, we propose Inf-SSM, a novel and simple geometry-aware regularization method that utilizes the geometry of the infinite-dimensional Grassmannian to constrain state evolution during CL. Unlike classical continual learning methods that constrain weight updates, Inf-SSM regularizes the infinite-horizon evolution of SSMs encoded in their extended observability subspace. We show that enforcing this regularization requires solving a matrix equation known as the Sylvester equation, which typically incurs $\mathcal{O}(n^3)$ complexity. We develop a $\mathcal{O}(n^2)$ solution by exploiting the structure and properties of SSMs. This leads to an efficient regularization mechanism that can be seamlessly integrated into existing CL methods. Comprehensive experiments on challenging benchmarks, including ImageNet-R and Caltech-256, demonstrate a significant reduction in forgetting while improving accuracy across sequential tasks.