Abstract:Deformable transformers deliver state-of-the-art detection but map poorly to hardware due to irregular memory access and low arithmetic intensity. We introduce QUILL, a schedule-aware accelerator that turns deformable attention into cache-friendly, single-pass work. At its core, Distance-based Out-of-Order Querying (DOOQ) orders queries by spatial proximity; the look-ahead drives a region prefetch into an alternate buffer--forming a schedule-aware prefetch loop that overlaps memory and compute. A fused MSDeformAttn engine executes interpolation, Softmax, aggregation, and the final projection (W''m) in one pass without spilling intermediates, while small tensors are kept on-chip and surrounding dense layers run on integrated GEMMs. Implemented as RTL and evaluated end-to-end, QUILL achieves up to 7.29x higher throughput and 47.3x better energy efficiency than an RTX 4090, and exceeds prior accelerators by 3.26-9.82x in throughput and 2.01-6.07x in energy efficiency. With mixed-precision quantization, accuracy tracks FP32 within <=0.9 AP across Deformable and Sparse DETR variants. By converting sparsity into locality--and locality into utilization--QUILL delivers consistent, end-to-end speedups.
Abstract:Recent advances in LLMs have outpaced the computational and memory capacities of edge platforms that primarily employ CPUs, thereby challenging efficient and scalable deployment. While ternary quantization enables significant resource savings, existing CPU solutions rely heavily on memory-based lookup tables (LUTs) which limit scalability, and FPGA or GPU accelerators remain impractical for edge use. This paper presents T-SAR, the first framework to achieve scalable ternary LLM inference on CPUs by repurposing the SIMD register file for dynamic, in-register LUT generation with minimal hardware modifications. T-SAR eliminates memory bottlenecks and maximizes data-level parallelism, delivering 5.6-24.5x and 1.1-86.2x improvements in GEMM latency and GEMV throughput, respectively, with only 3.2% power and 1.4% area overheads in SIMD units. T-SAR achieves up to 2.5-4.9x the energy efficiency of an NVIDIA Jetson AGX Orin, establishing a practical approach for efficient LLM inference on edge platforms.
Abstract:The integration of spiking neural networks (SNNs) with transformer-based architectures has opened new opportunities for bio-inspired low-power, event-driven visual reasoning on edge devices. However, the high temporal resolution and binary nature of spike-driven computation introduce architectural mismatches with conventional digital hardware (CPU/GPU). Prior neuromorphic and Processing-in-Memory (PIM) accelerators struggle with high sparsity and complex operations prevalent in such models. To address these challenges, we propose a memory-centric hardware accelerator tailored for spiking transformers, optimized for deployment in real-time event-driven frameworks such as classification with both static and event-based input frames. Our design leverages a hybrid analog-digital PIM architecture with input sparsity optimizations, and a custom-designed dataflow to minimize memory access overhead and maximize data reuse under spatiotemporal sparsity, for compute and memory-efficient end-to-end execution of spiking transformers. We subsequently propose inference-time software optimizations for layer skipping, and timestep reduction, leveraging Bayesian Optimization with surrogate modeling to perform robust, efficient co-exploration of the joint algorithmic-microarchitectural design spaces under tight computational budgets. Evaluated on both image(ImageNet) and event-based (CIFAR-10 DVS, DVSGesture) classification, the accelerator achieves up to ~467x and ~1.86x energy reduction compared to edge GPU (Jetson Orin Nano) and previous PIM accelerators for spiking transformers, while maintaining competitive task accuracy on ImageNet dataset. This work enables a new class of intelligent ubiquitous edge AI, built using spiking transformer acceleration for low-power, real-time visual processing at the extreme edge.
Abstract:Hyperdimensional computing (HDC) suits memory, energy, and reliability-constrained systems, yet the standard "one prototype per class" design requires $O(CD)$ memory (with $C$ classes and dimensionality $D$). Prior compaction reduces $D$ (feature axis), improving storage/compute but weakening robustness. We introduce LogHD, a logarithmic class-axis reduction that replaces the $C$ per-class prototypes with $n\!\approx\!\lceil\log_k C\rceil$ bundle hypervectors (alphabet size $k$) and decodes in an $n$-dimensional activation space, cutting memory to $O(D\log_k C)$ while preserving $D$. LogHD uses a capacity-aware codebook and profile-based decoding, and composes with feature-axis sparsification. Across datasets and injected bit flips, LogHD attains competitive accuracy with smaller models and higher resilience at matched memory. Under equal memory, it sustains target accuracy at roughly $2.5$-$3.0\times$ higher bit-flip rates than feature-axis compression; an ASIC instantiation delivers $498\times$ energy efficiency and $62.6\times$ speedup over an AMD Ryzen 9 9950X and $24.3\times$/$6.58\times$ over an NVIDIA RTX 4090, and is $4.06\times$ more energy-efficient and $2.19\times$ faster than a feature-axis HDC ASIC baseline.
Abstract:Decomposition is a proven way to shrink deep networks without changing I/O. We bring this idea to hyperdimensional computing (HDC), where footprint cuts usually shrink the feature axis and erode concentration and robustness. Prior HDC decompositions decode via fixed atomic hypervectors, which are ill-suited for compressing learned class prototypes. We introduce DecoHD, which learns directly in a decomposed HDC parameterization: a small, shared set of per-layer channels with multiplicative binding across layers and bundling at the end, yielding a large representational space from compact factors. DecoHD compresses along the class axis via a lightweight bundling head while preserving native bind-bundle-score; training is end-to-end, and inference remains pure HDC, aligning with in/near-memory accelerators. In evaluation, DecoHD attains extreme memory savings with only minor accuracy degradation under tight deployment budgets. On average it stays within about 0.1-0.15% of a strong non-reduced HDC baseline (worst case 5.7%), is more robust to random bit-flip noise, reaches its accuracy plateau with up to ~97% fewer trainable parameters, and -- in hardware -- delivers roughly 277x/35x energy/speed gains over a CPU (AMD Ryzen 9 9950X), 13.5x/3.7x over a GPU (NVIDIA RTX 4090), and 2.0x/2.4x over a baseline HDC ASIC.




Abstract:Text-to-image diffusion models often exhibit degraded performance when generating images beyond their training resolution. Recent training-free methods can mitigate this limitation, but they often require substantial computation or are incompatible with recent Diffusion Transformer models. In this paper, we propose ScaleDiff, a model-agnostic and highly efficient framework for extending the resolution of pretrained diffusion models without any additional training. A core component of our framework is Neighborhood Patch Attention (NPA), an efficient mechanism that reduces computational redundancy in the self-attention layer with non-overlapping patches. We integrate NPA into an SDEdit pipeline and introduce Latent Frequency Mixing (LFM) to better generate fine details. Furthermore, we apply Structure Guidance to enhance global structure during the denoising process. Experimental results demonstrate that ScaleDiff achieves state-of-the-art performance among training-free methods in terms of both image quality and inference speed on both U-Net and Diffusion Transformer architectures.
Abstract:Causal reasoning is fundamental for Large Language Models (LLMs) to understand genuine cause-and-effect relationships beyond pattern matching. Existing benchmarks suffer from critical limitations such as reliance on synthetic data and narrow domain coverage. We introduce a novel benchmark constructed from casually identified relationships extracted from top-tier economics and finance journals, drawing on rigorous methodologies including instrumental variables, difference-in-differences, and regression discontinuity designs. Our benchmark comprises 40,379 evaluation items covering five task types across domains such as health, environment, technology, law, and culture. Experimental results on eight state-of-the-art LLMs reveal substantial limitations, with the best model achieving only 57.6\% accuracy. Moreover, model scale does not consistently translate to superior performance, and even advanced reasoning models struggle with fundamental causal relationship identification. These findings underscore a critical gap between current LLM capabilities and demands of reliable causal reasoning in high-stakes applications.
Abstract:Deep neural networks (DNNs) are highly susceptible to adversarial examples--subtle, imperceptible perturbations that can lead to incorrect predictions. While detection-based defenses offer a practical alternative to adversarial training, many existing methods depend on external models, complex architectures, heavy augmentations, or adversarial data, limiting their efficiency and generalizability. We introduce a lightweight, plug-in detection framework that leverages internal layer-wise inconsistencies within the target model itself, requiring only benign data for calibration. Our approach is grounded in the A Few Large Shifts Assumption, which posits that adversarial perturbations typically induce large representation shifts in a small subset of layers. Building on this, we propose two complementary strategies--Recovery Testing (RT) and Logit-layer Testing (LT)--to expose internal disruptions caused by adversaries. Evaluated on CIFAR-10, CIFAR-100, and ImageNet under both standard and adaptive threat models, our method achieves state-of-the-art detection performance with negligible computational overhead and no compromise to clean accuracy.
Abstract:Neural control variates (NCVs) have emerged as a powerful tool for variance reduction in Monte Carlo (MC) simulations, particularly in high-dimensional problems where traditional control variates are difficult to construct analytically. By training neural networks to learn auxiliary functions correlated with the target observable, NCVs can significantly reduce estimator variance while preserving unbiasedness. However, a critical but often overlooked aspect of NCV training is the role of autocorrelated samples generated by Markov Chain Monte Carlo (MCMC). While such samples are typically discarded for error estimation due to their statistical redundancy, they may contain useful information about the structure of the underlying probability distribution that can benefit the training process. In this work, we systematically examine the effect of using correlated configurations in training neural control variates. We demonstrate, both conceptually and numerically, that training on correlated data can improve control variate performance, especially in settings with limited computational resources. Our analysis includes empirical results from $U(1)$ gauge theory and scalar field theory, illustrating when and how autocorrelated samples enhance NCV construction. These findings provide practical guidance for the efficient use of MCMC data in training neural networks.




Abstract:Large Vision Language Models (LVLMs) have been widely adopted to guide vision foundation models in performing reasoning segmentation tasks, achieving impressive performance. However, the substantial computational overhead associated with LVLMs presents a new challenge. The primary source of this computational cost arises from processing hundreds of image tokens. Therefore, an effective strategy to mitigate such overhead is to reduce the number of image tokens, a process known as image token pruning. Previous studies on image token pruning for LVLMs have primarily focused on high level visual understanding tasks, such as visual question answering and image captioning. In contrast, guiding vision foundation models to generate accurate visual masks based on textual queries demands precise semantic and spatial reasoning capabilities. Consequently, pruning methods must carefully control individual image tokens throughout the LVLM reasoning process. Our empirical analysis reveals that existing methods struggle to adequately balance reductions in computational overhead with the necessity to maintain high segmentation accuracy. In this work, we propose LVLM_CSP, a novel training free visual token pruning method specifically designed for LVLM based reasoning segmentation tasks. LVLM_CSP consists of three stages: clustering, scattering, and pruning. Initially, the LVLM performs coarse-grained visual reasoning using a subset of selected image tokens. Next, fine grained reasoning is conducted, and finally, most visual tokens are pruned in the last stage. Extensive experiments demonstrate that LVLM_CSP achieves a 65% reduction in image token inference FLOPs with virtually no accuracy degradation, and a 70% reduction with only a minor 1% drop in accuracy on the 7B LVLM.