Abstract:Discovering functional crystalline materials entails navigating an immense combinatorial design space. While recent advances in generative artificial intelligence have enabled the sampling of chemically plausible compositions and structures, a fundamental challenge remains: the objective misalignment between likelihood-based sampling in generative modelling and targeted focus on underexplored regions where novel compounds reside. Here, we introduce a reinforcement learning framework that guides latent denoising diffusion models toward diverse and novel, yet thermodynamically viable crystalline compounds. Our approach integrates group relative policy optimisation with verifiable, multi-objective rewards that jointly balance creativity, stability, and diversity. Beyond de novo generation, we demonstrate enhanced property-guided design that preserves chemical validity, while targeting desired functional properties. This approach establishes a modular foundation for controllable AI-driven inverse design that addresses the novelty-validity trade-off across scientific discovery applications of generative models.
Abstract:To address pressing scientific challenges such as climate change, increasingly sophisticated generative artificial intelligence models are being developed that can efficiently sample the large chemical space of possible functional materials. These models can quickly sample new chemical compositions paired with crystal structures. They are typically evaluated using uniqueness and novelty metrics, which depend on a chosen crystal distance function. However, the most prevalent distance function has four limitations: it fails to quantify the degree of similarity between compounds, cannot distinguish compositional difference and structural difference, lacks Lipschitz continuity against shifts in atomic coordinates, and results in a uniqueness metric that is not invariant against the permutation of generated samples. In this work, we propose using two continuous distance functions to evaluate uniqueness and novelty, which theoretically overcome these limitations. Our experiments show that these distances reveal insights missed by traditional distance functions, providing a more reliable basis for evaluating and comparing generative models for inorganic crystals.
Abstract:This paper presents a method to learn hand-object interaction prior for reconstructing a 3D hand-object scene from a single RGB image. The inference as well as training-data generation for 3D hand-object scene reconstruction is challenging due to the depth ambiguity of a single image and occlusions by the hand and object. We turn this challenge into an opportunity by utilizing the hand shape to constrain the possible relative configuration of the hand and object geometry. We design a generalizable implicit function, HandNeRF, that explicitly encodes the correlation of the 3D hand shape features and 2D object features to predict the hand and object scene geometry. With experiments on real-world datasets, we show that HandNeRF is able to reconstruct hand-object scenes of novel grasp configurations more accurately than comparable methods. Moreover, we demonstrate that object reconstruction from HandNeRF ensures more accurate execution of a downstream task, such as grasping for robotic hand-over.